論文の概要: Real-time Verification and Refinement of Language Model Text Generation
- arxiv url: http://arxiv.org/abs/2501.07824v1
- Date: Tue, 14 Jan 2025 03:59:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:42.611035
- Title: Real-time Verification and Refinement of Language Model Text Generation
- Title(参考訳): 言語モデルテキスト生成のリアルタイム検証と修正
- Authors: Joonho Ko, Jinheon Baek, Sung Ju Hwang,
- Abstract要約: 大規模言語モデル(LLM)は、幅広い自然言語タスクにおいて顕著な性能を示している。
重要な課題は、時に事実的に誤った答えを生じさせることである。
本稿では,LLM出力の検証と改善の効率化を目的とした新しい手法であるStreaming-VRを提案する。
- 参考スコア(独自算出の注目度): 60.04718679054704
- License:
- Abstract: Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は、幅広い自然言語タスクにおいて顕著な性能を示している。
しかし、重要な課題は、時に事実的に誤った答えを生じさせることである。
これに対処するため、以前の多くの作業は、世代内のエラーを特定し、さらに精錬することに重点を置いているが、それらは、世代全体(最初のトークンから最後のトークンまで)が完了した後のみ、LSMからの応答を検証するように設計されているため、デプロイが遅い。
さらに,LSMが早期に不正なトークンを生成すると,その後のトークンも事実的に誤っている可能性が高くなる。
そこで本研究では,LLM出力の検証と改善の効率化を目的とした新しい手法であるStreaming-VR(Streaming Verification and Refinement)を提案する。
特に,提案したStreaming-VRでは,ストリーミング処理と同様,トークンのオンザフライ検証と修正が可能であり,LCMが応答を構築すると,各トークンのサブセットが別のLCMによってリアルタイムにチェックおよび精査されることが保証される。
複数のデータセットに対する包括的評価を通じて,本手法がLCMの事実的精度を高めるだけでなく,従来の改良手法よりも効率的な解を提供することを示す。
関連論文リスト
- RAC: Efficient LLM Factuality Correction with Retrieval Augmentation [8.207682890286957]
大規模言語モデル(LLM)は、広範囲の自然言語処理(NLP)タスクにおいて印象的な結果を示すが、しばしば事実的に誤った出力を生成することができる。
本稿では,簡単な低遅延後補正手法である textbfRetrieval Augmented Correction (RAC) を提案する。
論文 参考訳(メタデータ) (2024-10-21T06:11:38Z) - Robustness of LLMs to Perturbations in Text [2.0670689746336]
大規模言語モデル(LLM)は素晴らしいパフォーマンスを示していますが、現実のデータでは避けられないノイズを処理できますか?
この研究は、LLMのテキストのモルフォロジー変化に対するレジリエンスを調査することによって、この重要な問題に取り組む。
以上の結果から, LLM は, 一般の信念とは対照的に, 文中での騒々しい摂動に対して静かであることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-12T04:50:17Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
まず、第1生成識別子の出力ロジットを活用して、候補のランク付け順序を直接取得する新しいリストワイズLLMリグレードアプローチであるFIRSTを紹介する。
実験結果から、BEIRベンチマークの利得により、FIRSTはロバストなランキング性能を維持しつつ、推論を50%高速化することが示された。
以上の結果から,LLMリランカーはクロスエンコーダに比べて強い蒸留信号を提供できることが示唆された。
論文 参考訳(メタデータ) (2024-06-21T21:27:50Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)を改善するための有望な方法である。
本稿では,RAGのためのスケーラブルでプラガブルな仮想トークンを学習する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-30T03:44:54Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
検証可能な生成は、大きな言語モデル(LLM)がドキュメントをサポートするテキストを生成することを目的としている。
本稿では,LLatrieval (Large Language Model Verified Retrieval)を提案する。
実験により、LLatrievalは幅広いベースラインを著しく上回り、最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2023-11-14T01:38:02Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z) - Validating Large Language Models with ReLM [11.552979853457117]
大規模言語モデル(LLM)は、自然に聞こえるテキストを生成する能力があるとして、高く評価されている。
データ記憶、バイアス、不適切な言語など、LLMのネガティブな影響に関する懸念が高まっている。
本稿では,標準正規表現を用いたLLMの検証・クエリシステムであるReLMを紹介する。
論文 参考訳(メタデータ) (2022-11-21T21:40:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。