論文の概要: Prediction Interval Construction Method for Electricity Prices
- arxiv url: http://arxiv.org/abs/2501.07827v1
- Date: Tue, 14 Jan 2025 04:02:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:06.135007
- Title: Prediction Interval Construction Method for Electricity Prices
- Title(参考訳): 電力価格の予測区間構築法
- Authors: Xin Lu,
- Abstract要約: 電力価格シナリオを生成する条件付き生成対向ネットワークを最初に提示する。
異なる生成シナリオを積み重ねて確率密度を求め、電気価格の不確かさを正確に反映することができる。
スパイクや揮発性価格に対処するため、気象要因のボラティリティレベルに基づく強化予測機構を導入する。
- 参考スコア(独自算出の注目度): 4.194844503412904
- License:
- Abstract: Accurate prediction of electricity prices plays an essential role in the electricity market. To reflect the uncertainty of electricity prices, price intervals are predicted. This paper proposes a novel prediction interval construction method. A conditional generative adversarial network is first presented to generate electricity price scenarios, with which the prediction intervals can be constructed. Then, different generated scenarios are stacked to obtain the probability densities, which can be applied to accurately reflect the uncertainty of electricity prices. Furthermore, a reinforced prediction mechanism based on the volatility level of weather factors is introduced to address the spikes or volatile prices. A case study is conducted to verify the effectiveness of the proposed novel prediction interval construction method. The method can also provide the probability density of each price scenario within the prediction interval and has the superiority to address the volatile prices and price spikes with a reinforced prediction mechanism.
- Abstract(参考訳): 電力価格の正確な予測は、電力市場において重要な役割を果たす。
電力価格の不確実性の反映として、価格間隔を予測する。
本稿では,新しい予測区間構築法を提案する。
条件付き生成対向ネットワークをまず提示し、予測間隔を構築可能な電力価格シナリオを生成する。
次に、異なる生成シナリオを積み重ねて確率密度を求め、電気価格の不確かさを正確に反映することができる。
さらに, 変動係数のボラティリティレベルに基づく予測機構を導入し, スパイクや揮発性価格に対処する。
提案手法の有効性を検証するために, ケーススタディを行った。
また、予測間隔内に各価格シナリオの確率密度を提供し、強化予測機構により揮発性価格と価格スパイクに対処できる優位性を有する。
関連論文リスト
- Revisiting Day-ahead Electricity Price: Simple Model Save Millions [7.088576782842557]
本稿では,予測可能な需要供給値から直接価格を導出することにより,予測精度を著しく向上する簡易な断片的線形モデルを提案する。
バングラデシュの山西省とISO New Englandの電力市場実験によると、こうした予測は年間数百万ドル節約できる可能性がある。
論文 参考訳(メタデータ) (2024-05-20T08:27:14Z) - Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression [0.0]
本研究では,日頭電力価格の点予測を確率的値に変換するための3つのポストプロセッシング手法について検討する。
後者は最も多様な振る舞いを示すが、予測分布のアンサンブルに最も寄与する。
注目すべきことに、この組み合わせのパフォーマンスは、ドイツとスペインの電力市場から4.5年間のテスト期間において、最先端の分散ディープニューラルネットワークよりも優れている。
論文 参考訳(メタデータ) (2024-04-02T19:50:36Z) - Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices [0.0]
本研究は、ドイツの日内取引で取引された電力価格のベイズ予測を初めて示したものである。
ターゲット変数はIDFull価格指数であり、予測は後続の予測分布として与えられる。
絶対誤差で平均5.9,%の減少を含む点測度と確率スコアの大幅な改善を観察する。
論文 参考訳(メタデータ) (2024-03-08T16:51:27Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
生成確率予測は、過去の時系列観測で与えられた条件付き確率分布に基づいて、将来の時系列サンプルを生成する。
本稿では、独立かつ同一に分散したイノベーションシーケンスを抽出する、弱いイノベーションオートエンコーダアーキテクチャと学習アルゴリズムを提案する。
弱いイノベーションシーケンスはベイズ的であり、弱イノベーションオートエンコーダが生成確率予測のための標準アーキテクチャとなることを示す。
論文 参考訳(メタデータ) (2024-02-21T15:23:21Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
本研究では,新しい重み付け手法であるCRPS学習を用いることで,日頭入札における最適決定が導かれるかどうかを検討する。
アンサンブルの多様性の増大は精度に肯定的な影響を与える可能性がある。
分布の等重集約と比較してCRPS学習を使用する場合の計算コストは、高い利益によって相殺されない。
論文 参考訳(メタデータ) (2023-08-29T17:10:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
深層学習層として電力市場浄化最適化を組み込むことを提案する。
このレイヤを差別化することで、予測と価格エラーのバランスをとることができる。
風力発電予測と短期電力市場浄化のネクサスにおける価格認識深層学習について紹介する。
論文 参考訳(メタデータ) (2023-08-02T21:16:05Z) - Electricity Price Prediction for Energy Storage System Arbitrage: A
Decision-focused Approach [4.992622806418143]
電力価格予測はエネルギー貯蔵システム(ESS)管理において重要な役割を担っている。
現在の予測モデルは、予測エラーを減らすことに重点を置いているが、下流の意思決定への影響を見落としている。
本稿では,下流最適化モデルから予測モデルへのギャップを埋めるため,ESS調停のための意思決定型電力価格予測手法を提案する。
論文 参考訳(メタデータ) (2023-04-30T00:43:26Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。