論文の概要: Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market
- arxiv url: http://arxiv.org/abs/2502.04935v1
- Date: Fri, 07 Feb 2025 13:57:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:49.955238
- Title: Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market
- Title(参考訳): 日頭リアルタイムバランシング市場における電力価格予測のコンフォーマル予測
- Authors: Ciaran O'Connor, Mohamed Bahloul, Roberto Rossi, Steven Prestwich, Andrea Visentin,
- Abstract要約: 再生可能エネルギーの電気市場への統合は 価格安定に重大な課題をもたらします
本研究では, Conformal Prediction (CP) 技術を用いた確率的価格予測の強化について検討した。
本稿では,量子レグレッションモデルの効率と時系列適応CP手法の強靭なカバレッジ特性を組み合わせたアンサンブル手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The integration of renewable energy into electricity markets poses significant challenges to price stability and increases the complexity of market operations. Accurate and reliable electricity price forecasting is crucial for effective market participation, where price dynamics can be significantly more challenging to predict. Probabilistic forecasting, through prediction intervals, efficiently quantifies the inherent uncertainties in electricity prices, supporting better decision-making for market participants. This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques, specifically Ensemble Batch Prediction Intervals and Sequential Predictive Conformal Inference. These methods provide precise and reliable prediction intervals, outperforming traditional models in validity metrics. We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques. This ensemble delivers both narrow prediction intervals and high coverage, leading to more reliable and accurate forecasts. We further evaluate the practical implications of CP techniques through a simulated trading algorithm applied to a battery storage system. The ensemble approach demonstrates improved financial returns in energy trading in both the Day-Ahead and Balancing Markets, highlighting its practical benefits for market participants.
- Abstract(参考訳): 再生可能エネルギーの電力市場への統合は、価格の安定と市場運営の複雑さの増大に重大な課題をもたらす。
正確な信頼性の高い電気価格予測は、効果的な市場参加には不可欠である。
確率的予測は、予測間隔を通じて、電気価格の固有の不確実性を効率的に定量化し、市場参加者のより良い意思決定を支援する。
本研究では, Conformal Prediction (CP) 技術,特にEnsemble Batch Prediction IntervalsとSequential Predictive Conformal Inferenceを用いた確率的価格予測の強化について検討する。
これらの手法は正確で信頼性の高い予測間隔を提供し、妥当性指標の従来のモデルよりも優れている。
本稿では,量子レグレッションモデルの効率と時系列適応CP手法の強靭なカバレッジ特性を組み合わせたアンサンブル手法を提案する。
このアンサンブルは、狭い予測間隔と高いカバレッジの両方を提供し、より信頼性と正確な予測をもたらす。
さらに, 蓄電池システムに適用したシミュレートトレーディングアルゴリズムを用いて, CP技術の有効性を検証した。
アンサンブルのアプローチは、デイアヘッド市場とバランシング市場の両方におけるエネルギートレーディングの金融リターンの改善を実証し、市場参加者にとって実用的利益を浮き彫りにしている。
関連論文リスト
- Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGEは、人間と機械が生成した予測を組み合わせたハイブリッド予測システムである。
このシステムは、確率と評価されたスキルに基づいて、人間と機械の予測の重み付けを集約する。
機械による予測にアクセスできる熟練した予測者は、過去のデータしか見ていない者よりも優れていた。
論文 参考訳(メタデータ) (2024-12-14T22:09:45Z) - Deep Learning-Based Electricity Price Forecast for Virtual Bidding in Wholesale Electricity Market [3.130428666578115]
本研究では,ERCOT(Electric Reliability Council of Texas)市場におけるリアルタイム電力価格と日頭電力価格の間に広がる価格を予測するためのトランスフォーマーに基づくディープラーニングモデルを提案する。
提案したモデルは現実的な制約の下で訓練され、毎週モデルを更新してウォーキングフォワードアプローチを用いて検証される。
その結果, ピーク時のみの取引戦略が50%を超える精度で, ほぼ一貫した利益をもたらすことがわかった。
論文 参考訳(メタデータ) (2024-11-25T20:04:16Z) - On-line conformalized neural networks ensembles for probabilistic forecasting of day-ahead electricity prices [41.94295877935867]
我々はPEPFに対する新しいアプローチを提案し、同型推論に基づく手法を用いて、アートニューラルネットワークのアンサンブルの手法を拡張した。
複数の市場地域で実験が行われ、昼の予測が達成され、時間帯のカバレッジが向上し、安定した確率的スコアが得られた。
論文 参考訳(メタデータ) (2024-04-03T13:22:47Z) - Conformal Prediction for Stochastic Decision-Making of PV Power in Electricity Markets [0.0]
コンフォメーション予測(CP)は、日々の太陽光発電電力予測の確率予測手法である。
CPを特定の入札戦略と組み合わせることで、エネルギーの不均衡を最小限に抑えて高い利益を得ることができる。
具体的には、k-アネレスト近傍の共形予測システムと無作為な森林回帰の後にモンドリアン・ビンニングを用いると、最良の利益が得られる。
論文 参考訳(メタデータ) (2024-03-29T12:34:57Z) - Combining predictive distributions of electricity prices: Does
minimizing the CRPS lead to optimal decisions in day-ahead bidding? [0.0]
本研究では,新しい重み付け手法であるCRPS学習を用いることで,日頭入札における最適決定が導かれるかどうかを検討する。
アンサンブルの多様性の増大は精度に肯定的な影響を与える可能性がある。
分布の等重集約と比較してCRPS学習を使用する場合の計算コストは、高い利益によって相殺されない。
論文 参考訳(メタデータ) (2023-08-29T17:10:38Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Probabilistic forecasting of German electricity imbalance prices [0.0]
再生可能エネルギー容量の指数的な成長は、電力価格と発電に大きな不確実性をもたらした。
両方の市場に参加しているエネルギートレーダーにとって、不均衡価格の予測は特に関心がある。
予測は配達の30分前に行われ、トレーダーがまだ取引先を選択する可能性がある。
論文 参考訳(メタデータ) (2022-05-23T16:32:20Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
本稿では,将来の軌道の予測分布に関連する不確かさを正確に予測する手法を提案する。
我々のアプローチであるCovariaceNetは、ガウス潜在変数を持つ条件付き生成モデルに基づいている。
論文 参考訳(メタデータ) (2021-09-07T09:38:24Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
近年の研究では、時間単位のドイツの日内連続市場は弱い状態にあることが示されている。
時間内電力価格の確率予測は、トレーディングウィンドウ毎に軌跡をシミュレートして行う。
この調査は、過去3時間でドイツの日内連続市場における価格分布を予測することを目的としているが、このアプローチは、特にヨーロッパでは、他の連続市場への適用を可能にする。
論文 参考訳(メタデータ) (2020-05-04T10:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。