Flow: A Modular Approach to Automated Agentic Workflow Generation
- URL: http://arxiv.org/abs/2501.07834v1
- Date: Tue, 14 Jan 2025 04:35:37 GMT
- Title: Flow: A Modular Approach to Automated Agentic Workflow Generation
- Authors: Boye Niu, Yiliao Song, Kai Lian, Yifan Shen, Yu Yao, Kun Zhang, Tongliang Liu,
- Abstract summary: Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution.
However, the effective adjustment of Agentic during execution has not been well-studied.
- Score: 53.073598156915615
- License:
- Abstract: Multi-agent frameworks powered by large language models (LLMs) have demonstrated great success in automated planning and task execution. However, the effective adjustment of Agentic workflows during execution has not been well-studied. A effective workflow adjustment is crucial, as in many real-world scenarios, the initial plan must adjust to unforeseen challenges and changing conditions in real-time to ensure the efficient execution of complex tasks. In this paper, we define workflows as an activity-on-vertex (AOV) graphs. We continuously refine the workflow by dynamically adjusting task allocations based on historical performance and previous AOV with LLM agents. To further enhance system performance, we emphasize modularity in workflow design based on measuring parallelism and dependence complexity. Our proposed multi-agent framework achieved efficient sub-task concurrent execution, goal achievement, and error tolerance. Empirical results across different practical tasks demonstrate dramatic improvements in the efficiency of multi-agent frameworks through dynamic workflow updating and modularization.
Related papers
- Opus: A Large Work Model for Complex Workflow Generation [0.0]
Opus is a framework for generating and optimizing tasks tailored to complex Business Process Outsourcing (BPO) use cases.
Our approach generates executables from Intention, defined as the alignment of Client Input, Client Output and Process Directed Context.
arXiv Detail & Related papers (2024-11-30T20:00:41Z) - Benchmarking Agentic Workflow Generation [80.74757493266057]
We introduce WorFBench, a unified workflow generation benchmark with multi-faceted scenarios and intricate graph workflow structures.
We also present WorFEval, a systemic evaluation protocol utilizing subsequence and subgraph matching algorithms.
We observe that the generated can enhance downstream tasks, enabling them to achieve superior performance with less time during inference.
arXiv Detail & Related papers (2024-10-10T12:41:19Z) - Agent Workflow Memory [71.81385627556398]
We introduce Agent Memory, a method for inducing commonly reused routines.
AWM substantially improves the baseline results by 24.6% and 51.1% relative success rate.
Online AWM robustly generalizes in cross-task, website, and domain evaluations.
arXiv Detail & Related papers (2024-09-11T17:21:00Z) - AutoFlow: Automated Workflow Generation for Large Language Model Agents [39.72700864347576]
Large Language Models (LLMs) have shown significant progress in understanding complex natural language.
To make sure LLM Agents follow an effective and reliable procedure to solve the given task, manually designed are usually used.
We propose AutoFlow, a framework designed to automatically generate for agents to solve complex tasks.
arXiv Detail & Related papers (2024-07-01T21:05:02Z) - FlowBench: Revisiting and Benchmarking Workflow-Guided Planning for LLM-based Agents [64.1759086221016]
We present FlowBench, the first benchmark for workflow-guided planning.
FlowBench covers 51 different scenarios from 6 domains, with knowledge presented in diverse formats.
Results indicate that current LLM agents need considerable improvements for satisfactory planning.
arXiv Detail & Related papers (2024-06-21T06:13:00Z) - Efficient Orchestrated AI Workflows Execution on Scale-out Spatial Architecture [17.516934379812994]
We present "Orchestrated AIs," an approach that integrates various tasks with logic-driven decisions into dynamic, sophisticated AIs.
We find that the intrinsic Dual Dynamicity of Orchestrated AIs can be effectively represented using the Orchestrated spatial Graph.
Our evaluations demonstrate that significantly outperforms traditional architectures in handling the dynamic demands of Orchestrated AIs.
arXiv Detail & Related papers (2024-05-21T14:09:31Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Optimal task and motion planning and execution for human-robot
multi-agent systems in dynamic environments [54.39292848359306]
We propose a combined task and motion planning approach to optimize sequencing, assignment, and execution of tasks.
The framework relies on decoupling tasks and actions, where an action is one possible geometric realization of a symbolic task.
We demonstrate the approach effectiveness in a collaborative manufacturing scenario, in which a robotic arm and a human worker shall assemble a mosaic.
arXiv Detail & Related papers (2023-03-27T01:50:45Z) - Asynchronous Execution of Heterogeneous Tasks in ML-driven HPC Workflows [1.376408511310322]
Asynchronous execution is crucial to improve resource utilization, task throughput and reduce' makespan.
We investigate the requirements and properties of the asynchronous task execution of machine learning (ML)-driven high performance computing.
Our experiments represent relevant scientific drivers, we perform them at scale on Summit, and we show that the performance enhancements due to asynchronous execution are consistent with our model.
arXiv Detail & Related papers (2022-08-23T16:25:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.