論文の概要: Exploring Aviation Incident Narratives Using Topic Modeling and Clustering Techniques
- arxiv url: http://arxiv.org/abs/2501.07924v1
- Date: Tue, 14 Jan 2025 08:23:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:15.603856
- Title: Exploring Aviation Incident Narratives Using Topic Modeling and Clustering Techniques
- Title(参考訳): トピックモデリングとクラスタリング技術を用いた航空事故物語の探索
- Authors: Aziida Nanyonga, Hassan Wasswa, Ugur Turhan, Keith Joiner, Graham Wild,
- Abstract要約: 本研究は,国立運輸安全委員会(NTSB)データセットに高度自然言語処理(NLP)技術を適用した。
主な目的は、潜在テーマの識別、意味的関係の探索、確率的関係の評価、共有特性に基づくクラスタインシデントである。
比較分析の結果, LDAのコヒーレンス値は0.597, pLSAは0.583, LSAは0.542, NMFは0.437であった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Aviation safety is a global concern, requiring detailed investigations into incidents to understand contributing factors comprehensively. This study uses the National Transportation Safety Board (NTSB) dataset. It applies advanced natural language processing (NLP) techniques, including Latent Dirichlet Allocation (LDA), Non-Negative Matrix Factorization (NMF), Latent Semantic Analysis (LSA), Probabilistic Latent Semantic Analysis (pLSA), and K-means clustering. The main objectives are identifying latent themes, exploring semantic relationships, assessing probabilistic connections, and cluster incidents based on shared characteristics. This research contributes to aviation safety by providing insights into incident narratives and demonstrating the versatility of NLP and topic modelling techniques in extracting valuable information from complex datasets. The results, including topics identified from various techniques, provide an understanding of recurring themes. Comparative analysis reveals that LDA performed best with a coherence value of 0.597, pLSA of 0.583, LSA of 0.542, and NMF of 0.437. K-means clustering further reveals commonalities and unique insights into incident narratives. In conclusion, this study uncovers latent patterns and thematic structures within incident narratives, offering a comparative analysis of multiple-topic modelling techniques. Future research avenues include exploring temporal patterns, incorporating additional datasets, and developing predictive models for early identification of safety issues. This research lays the groundwork for enhancing the understanding and improvement of aviation safety by utilising the wealth of information embedded in incident narratives.
- Abstract(参考訳): 航空安全は世界的な懸念であり、貢献要因を包括的に理解するために、インシデントに関する詳細な調査が必要である。
本研究は国立運輸安全委員会(NTSB)のデータセットを用いた。
高度な自然言語処理(NLP)技術として、Latent Dirichlet Allocation (LDA)、Non-Negative Matrix Factorization (NMF)、Latent Semantic Analysis (LSA)、Probabilistic Latent Semantic Analysis (pLSA)、K-means Clusteringがある。
主な目的は、潜在テーマの識別、意味的関係の探索、確率的関係の評価、共有特性に基づくクラスタインシデントである。
本研究は, 複雑なデータセットから貴重な情報を抽出する上で, NLPとトピックモデリング技術の汎用性を実証し, インシデント物語の洞察を提供することにより, 航空安全に寄与する。
様々なテクニックから特定されたトピックを含む結果は、繰り返されるテーマの理解を提供する。
比較分析の結果, LDAのコヒーレンス値は0.597, pLSAは0.583, LSAは0.542, NMFは0.437であった。
K-meansクラスタリングはさらに、インシデント物語に対する共通点とユニークな洞察を明らかにしている。
結論として,本研究では,複数トピック・モデリング手法の比較分析を行い,インシデント物語における潜伏パターンと主題構造を明らかにする。
今後の研究の道には、時間的パターンの探索、追加のデータセットの導入、安全問題の早期発見のための予測モデルの開発などが含まれる。
本研究は,インシデント物語に埋め込まれた豊富な情報を活用することにより,航空安全の理解と改善の基盤となる。
関連論文リスト
- Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-Agnostic Interpretability with Local Explanations [0.0]
本研究は,深層ニューラルネットワーク用に設計された新たな説明可能性手法であるSMILEの実装を,ポイントクラウドベースモデルを用いて検討する。
このアプローチは、様々なカーネル幅、摂動数、クラスタリング構成における忠実度損失、R2スコア、ロバストネスの点で優れた性能を示す。
カテゴリの分類におけるデータセットバイアスをさらに特定し、安全クリティカルなアプリケーションにおいてより包括的なデータセットの必要性を強調した。
論文 参考訳(メタデータ) (2024-10-20T12:13:59Z) - Comprehensive Review and Empirical Evaluation of Causal Discovery Algorithms for Numerical Data [3.9523536371670045]
因果解析は、様々な分野における現象の根本原因を理解する上で不可欠な要素となっている。
因果発見アルゴリズムに関する既存の文献は、一貫性のない方法論で断片化されている。
包括的な評価の欠如、すなわちデータ特性は、ベンチマークアルゴリズムにおいて共同で解析されることがしばしば無視される。
論文 参考訳(メタデータ) (2024-07-17T23:47:05Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - Topic Modeling Analysis of Aviation Accident Reports: A Comparative
Study between LDA and NMF Models [0.0]
本稿では、LDA(Latent Dirichlet Allocation)とNon- negative Matrix Factorization(NMF)の2つの主要なトピックモデリング手法を比較した。
LDAは、トピック内の単語間のより強い意味的関連性を示す、より高いトピックコヒーレンスを示す。
NMFは、航空事故の特定の側面についてより焦点を絞った分析を可能にする、はっきりした、きめ細かいトピックを生み出すのに優れていた。
論文 参考訳(メタデータ) (2024-03-04T01:41:07Z) - Key Design Choices in Source-Free Unsupervised Domain Adaptation: An
In-depth Empirical Analysis [16.0130560365211]
本研究では、画像分類におけるSF-UDA(Source-Free Unsupervised Domain Adaptation)のベンチマークフレームワークを提供する。
この研究は、さまざまなSF-UDAテクニックを実証的に検証し、データセット間の一貫性を評価する。
トレーニング済みのデータセットと戦略を徹底的に評価し、特に教師付きおよび自己監督型の手法に重点を置いている。
論文 参考訳(メタデータ) (2024-02-25T13:37:36Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
大量のテキストデータをオンラインで分析するために、機械学習と自然言語処理アルゴリズムがデプロイされている。
本研究では,顧客レビューに特化して用いられる5つのトピックモデリング手法について検討・比較する。
以上の結果から,BERTopicはより意味のあるトピックを抽出し,良好な結果を得ることができた。
論文 参考訳(メタデータ) (2023-08-19T08:18:04Z) - A Study of Situational Reasoning for Traffic Understanding [63.45021731775964]
トラフィック領域における状況推論のための3つの新しいテキストベースのタスクを考案する。
先行作業における言語推論タスクにまたがる一般化能力を示す知識強化手法を4つ採用する。
本稿では,データ分割におけるモデル性能の詳細な解析を行い,モデル予測を分類的に検討する。
論文 参考訳(メタデータ) (2023-06-05T01:01:12Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
本稿では、因果発見と推論技術を用いて、科学分野における研究トピックの進化を分析するための体系的な枠組みを提案する。
我々は3つの変数を定義し、NLPにおける研究トピックの進化の多様な側面を包含する。
我々は因果探索アルゴリズムを用いてこれらの変数間の因果関係を明らかにする。
論文 参考訳(メタデータ) (2023-05-22T11:08:00Z) - Temporal Relevance Analysis for Video Action Models [70.39411261685963]
まず,CNNに基づく行動モデルにより捉えたフレーム間の時間的関係を定量化する手法を提案する。
次に、時間的モデリングがどのように影響を受けるかをよりよく理解するために、包括的な実験と詳細な分析を行います。
論文 参考訳(メタデータ) (2022-04-25T19:06:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。