論文の概要: Advice for Diabetes Self-Management by ChatGPT Models: Challenges and Recommendations
- arxiv url: http://arxiv.org/abs/2501.07931v1
- Date: Tue, 14 Jan 2025 08:32:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:25:25.523552
- Title: Advice for Diabetes Self-Management by ChatGPT Models: Challenges and Recommendations
- Title(参考訳): ChatGPTモデルによる糖尿病セルフマネジメントのアドバイス:課題と勧告
- Authors: Waqar Hussain, John Grundy,
- Abstract要約: 糖尿病患者に対するChatGPT 3.5および4の反応について検討した。
以上の結果から,精度と埋込バイアスの相違が判明した。
本稿では,病原性外部記憶を迅速に評価し,組み込むコモンセンス評価層を提案する。
- 参考スコア(独自算出の注目度): 4.321186293298159
- License:
- Abstract: Given their ability for advanced reasoning, extensive contextual understanding, and robust question-answering abilities, large language models have become prominent in healthcare management research. Despite adeptly handling a broad spectrum of healthcare inquiries, these models face significant challenges in delivering accurate and practical advice for chronic conditions such as diabetes. We evaluate the responses of ChatGPT versions 3.5 and 4 to diabetes patient queries, assessing their depth of medical knowledge and their capacity to deliver personalized, context-specific advice for diabetes self-management. Our findings reveal discrepancies in accuracy and embedded biases, emphasizing the models' limitations in providing tailored advice unless activated by sophisticated prompting techniques. Additionally, we observe that both models often provide advice without seeking necessary clarification, a practice that can result in potentially dangerous advice. This underscores the limited practical effectiveness of these models without human oversight in clinical settings. To address these issues, we propose a commonsense evaluation layer for prompt evaluation and incorporating disease-specific external memory using an advanced Retrieval Augmented Generation technique. This approach aims to improve information quality and reduce misinformation risks, contributing to more reliable AI applications in healthcare settings. Our findings seek to influence the future direction of AI in healthcare, enhancing both the scope and quality of its integration.
- Abstract(参考訳): 高度な推論能力、広範な文脈理解能力、堅牢な質問応答能力を考えると、医療管理研究において大きな言語モデルが注目されている。
広範囲にわたる医療調査を扱うにもかかわらず、これらのモデルは糖尿病のような慢性疾患に対して正確かつ実践的なアドバイスを提供する上で、重大な課題に直面している。
糖尿病患者の質問に対するChatGPT 3.5および4の反応を評価し,その深度と,糖尿病自己管理に対する個人的・文脈特異的なアドバイスを提供する能力を評価する。
本研究は,高度なプロンプト技術によって活性化されない限り,適切なアドバイスを提供する際のモデルの限界を強調し,精度と組込みバイアスの相違を明らかにした。
さらに、どちらのモデルも、必要な明確化を求めることなくアドバイスを提供することがしばしばあり、これは潜在的に危険なアドバイスをもたらす可能性があるプラクティスである。
このことは、臨床環境での人間の監視なしに、これらのモデルの限られた実用的効果を裏付けるものである。
これらの課題に対処するため,我々は,先進的な検索拡張生成技術を用いて,疾患固有の外部メモリの迅速な評価と実装を行うコモンセンス評価層を提案する。
このアプローチは、情報品質を改善し、誤った情報リスクを低減することを目的としており、医療設定におけるより信頼性の高いAIアプリケーションに寄与する。
我々の発見は、医療におけるAIの今後の方向性に影響を与え、その統合の範囲と品質の両方を高めることを目指している。
関連論文リスト
- Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
本稿では,医学的視覚的質問応答(VQA)モデルのための,パーソナライズド・フェデレーションド・ラーニング(pFL)手法を提案する。
提案手法では,学習可能なプロンプトをTransformerアーキテクチャに導入し,膨大な計算コストを伴わずに,多様な医療データセット上で効率的にトレーニングする。
論文 参考訳(メタデータ) (2024-10-23T00:31:17Z) - Detecting Bias and Enhancing Diagnostic Accuracy in Large Language Models for Healthcare [0.2302001830524133]
バイアスドAIによる医療アドバイスと誤診は患者の安全を脅かす可能性がある。
本研究では、医療における倫理的かつ正確なAIを促進するために設計された新しいリソースを紹介する。
論文 参考訳(メタデータ) (2024-10-09T06:00:05Z) - MLtoGAI: Semantic Web based with Machine Learning for Enhanced Disease Prediction and Personalized Recommendations using Generative AI [0.929965561686354]
本研究は,セマンティックWeb技術と機械学習(ML)を統合して疾患予測を強化するMLtoGAIを紹介する。
セマンティック技術と説明可能なAIを活用することで、システムは疾患予測の精度を高め、レコメンデーションが個々の患者に適切かつ容易に理解されることを保証する。
論文 参考訳(メタデータ) (2024-07-26T06:32:06Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Self-Diagnosis and Large Language Models: A New Front for Medical
Misinformation [8.738092015092207]
一般ユーザによる自己診断のレンズから,大規模言語モデル(LLM)の性能を評価する。
本研究では,実世界の事例を模倣したオープンエンド質問に対する応答を評価するテスト手法を開発した。
a) これらのモデルでは, 既知よりもパフォーマンスが悪く, b) 誤ったレコメンデーションを述べる際に, 過度な自信を含む特異な行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-07-10T21:28:26Z) - Deep Attention Q-Network for Personalized Treatment Recommendation [1.6631602844999724]
パーソナライズされた治療レコメンデーションのためのDeep Attention Q-Networkを提案する。
深い強化学習フレームワーク内のTransformerアーキテクチャは、過去のすべての患者の観察を効率的に取り入れている。
実世界の敗血症と急性低血圧コホートにおけるモデルの評価を行い、最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-07-04T07:00:19Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
本稿では,ソフトプロンプトを用いたモデルに依存しないパイプラインを導入し,確率に基づく要約の利点を保ちながら分散を減少させる。
実験結果から,本手法は性能を向上するだけでなく,様々な言語モデルの分散を効果的に抑制することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-23T04:47:46Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Leveraging Clinical Context for User-Centered Explainability: A Diabetes
Use Case [4.520155732176645]
慢性腎臓病(CKD)のリスクを評価する2型糖尿病(T2DM)症例における概念実証(POC)を実装した。
POCには、CKDのリスク予測モデル、予測のポストホック説明器、その他の自然言語モジュールが含まれています。
我々のPOCアプローチは、複数の知識ソースと臨床シナリオをカバーし、データと予測をPCPに説明するために知識をブレンドし、医療専門家から熱心に反応した。
論文 参考訳(メタデータ) (2021-07-06T02:44:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。