論文の概要: Detecting Bias and Enhancing Diagnostic Accuracy in Large Language Models for Healthcare
- arxiv url: http://arxiv.org/abs/2410.06566v1
- Date: Wed, 9 Oct 2024 06:00:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 04:49:21.991793
- Title: Detecting Bias and Enhancing Diagnostic Accuracy in Large Language Models for Healthcare
- Title(参考訳): 医療用大規模言語モデルにおけるバイアス検出と診断精度の向上
- Authors: Pardis Sadat Zahraei, Zahra Shakeri,
- Abstract要約: バイアスドAIによる医療アドバイスと誤診は患者の安全を脅かす可能性がある。
本研究では、医療における倫理的かつ正確なAIを促進するために設計された新しいリソースを紹介する。
- 参考スコア(独自算出の注目度): 0.2302001830524133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biased AI-generated medical advice and misdiagnoses can jeopardize patient safety, making the integrity of AI in healthcare more critical than ever. As Large Language Models (LLMs) take on a growing role in medical decision-making, addressing their biases and enhancing their accuracy is key to delivering safe, reliable care. This study addresses these challenges head-on by introducing new resources designed to promote ethical and precise AI in healthcare. We present two datasets: BiasMD, featuring 6,007 question-answer pairs crafted to evaluate and mitigate biases in health-related LLM outputs, and DiseaseMatcher, with 32,000 clinical question-answer pairs spanning 700 diseases, aimed at assessing symptom-based diagnostic accuracy. Using these datasets, we developed the EthiClinician, a fine-tuned model built on the ChatDoctor framework, which outperforms GPT-4 in both ethical reasoning and clinical judgment. By exposing and correcting hidden biases in existing models for healthcare, our work sets a new benchmark for safer, more reliable patient outcomes.
- Abstract(参考訳): バイアスドAIによる医療アドバイスと誤診は患者の安全を危険にさらし、医療におけるAIの整合性はこれまでになく重要になる。
大規模言語モデル(LLM)は、医療的意思決定において、そのバイアスに対処し、正確性を高めることが、安全で信頼性の高いケアを提供するための鍵となる。
本研究では、医療における倫理的かつ正確なAIを促進するために設計された新しいリソースを導入することで、これらの課題に真っ向から対処する。
健康関連LSM出力のバイアスを評価・緩和する6,007組の質問応答対と、症状に基づく診断精度を評価することを目的とした700の疾患にまたがる32,000組の質問応答対の2つのデータセットを提示する。
これらのデータセットを用いて,ChatDoctorフレームワーク上に構築された細調整モデルであるEthiClinicianを開発した。
既存の医療モデルに隠れたバイアスを露呈し、修正することで、我々の研究はより安全で信頼性の高い患者結果のための新しいベンチマークを設定します。
関連論文リスト
- Which Client is Reliable?: A Reliable and Personalized Prompt-based Federated Learning for Medical Image Question Answering [51.26412822853409]
本稿では,医学的視覚的質問応答(VQA)モデルのための,パーソナライズド・フェデレーションド・ラーニング(pFL)手法を提案する。
提案手法では,学習可能なプロンプトをTransformerアーキテクチャに導入し,膨大な計算コストを伴わずに,多様な医療データセット上で効率的にトレーニングする。
論文 参考訳(メタデータ) (2024-10-23T00:31:17Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
本稿では,AIPatient Knowledge Graph (AIPatient KG) を入力とし,生成バックボーンとしてReasoning Retrieval-Augmented Generation (RAG) を開発した。
Reasoning RAGは、検索、KGクエリ生成、抽象化、チェッカー、書き直し、要約を含むタスクにまたがる6つのLLMエージェントを活用する。
ANOVA F-value 0.6126, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.6126, p>0.1)。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - A Concept-based Interpretable Model for the Diagnosis of Choroid
Neoplasias using Multimodal Data [28.632437578685842]
我々は成人で最も多い眼がんである脈絡膜新生症(5.1%)に焦点を当てた。
本研究は,3種類の脈絡膜腫瘍を識別する概念に基づく解釈可能なモデルを提案する。
注目すべきは、このモデルがブラックボックスモデルに匹敵するF1スコアの0.91を達成する一方で、ジュニア医師の診断精度を42%向上させることである。
論文 参考訳(メタデータ) (2024-03-08T07:15:53Z) - Integrating ChatGPT into Secure Hospital Networks: A Case Study on
Improving Radiology Report Analysis [1.3624495460189863]
本研究は,ChatGPTに類似したクラウドベースのAIを,放射線学報告を解析するためのセキュアなモデルに初めて適応させたものである。
コントラスト学習によるユニークな文レベルの知識蒸留手法を用いて,異常検出の精度を95%以上向上する。
論文 参考訳(メタデータ) (2024-02-14T18:02:24Z) - Large Language Models in Medical Term Classification and Unexpected
Misalignment Between Response and Reasoning [28.355000184014084]
本研究は, 軽度認知障害 (MCI) 患者を退院サマリーから識別する, 最先端の大規模言語モデル (LLMs) の有効性を評価するものである。
データは、モデルの微調整と評価のために、トレーニング、検証、テストセットに7:2:1の比率で分割された。
FalconやLLaMA 2のようなオープンソースのモデルは高い精度を達成したが、説明的推論に欠けていた。
論文 参考訳(メタデータ) (2023-12-19T17:36:48Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
我々はUCADI(Unified CT-COVID AI Diagnostic Initiative)を立ち上げ、各ホスト機関でAIモデルを分散的にトレーニングし、独立して実行することができる。
本研究は,中国とイギリスに所在する23の病院で採取した3,336例の胸部CT9,573例について検討した。
論文 参考訳(メタデータ) (2021-11-18T00:43:41Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。