Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images
- URL: http://arxiv.org/abs/2011.14302v2
- Date: Tue, 1 Dec 2020 06:25:01 GMT
- Title: Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images
- Authors: Rui Li, Shunyi Zheng, Chenxi Duan, Jianlin Su, and Ce Zhang
- Abstract summary: We propose a Linear Attention Mechanism (LAM) to address this issue.
LAM is approximately equivalent to dot-product attention with computational efficiency.
We design a Multi-stage Attention ResU-Net for semantic segmentation from fine-resolution remote sensing images.
- Score: 9.398340832493457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The attention mechanism can refine the extracted feature maps and boost the
classification performance of the deep network, which has become an essential
technique in computer vision and natural language processing. However, the
memory and computational costs of the dot-product attention mechanism increase
quadratically with the spatio-temporal size of the input. Such growth hinders
the usage of attention mechanisms considerably in application scenarios with
large-scale inputs. In this Letter, we propose a Linear Attention Mechanism
(LAM) to address this issue, which is approximately equivalent to dot-product
attention with computational efficiency. Such a design makes the incorporation
between attention mechanisms and deep networks much more flexible and
versatile. Based on the proposed LAM, we re-factor the skip connections in the
raw U-Net and design a Multi-stage Attention ResU-Net (MAResU-Net) for semantic
segmentation from fine-resolution remote sensing images. Experiments conducted
on the Vaihingen dataset demonstrated the effectiveness and efficiency of our
MAResU-Net. Open-source code is available at
https://github.com/lironui/Multistage-Attention-ResU-Net.
Related papers
- LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
This paper introduces a framework that explores amodal segmentation for robotic grasping in cluttered scenes.
We propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net)
The results on different datasets show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-08-06T14:50:48Z) - AMMUNet: Multi-Scale Attention Map Merging for Remote Sensing Image Segmentation [4.618389486337933]
We propose AMMUNet, a UNet-based framework that employs multi-scale attention map merging.
The proposed AMMM effectively combines multi-scale attention maps into a unified representation using a fixed mask template.
We show that our approach achieves remarkable mean intersection over union (mIoU) scores of 75.48% on the Vaihingen dataset and an exceptional 77.90% on the Potsdam dataset.
arXiv Detail & Related papers (2024-04-20T15:23:15Z) - NiNformer: A Network in Network Transformer with Token Mixing as a Gating Function Generator [1.3812010983144802]
The attention mechanism was utilized in computer vision as the Vision Transformer ViT.
It comes with the drawback of being expensive and requiring datasets of considerable size for effective optimization.
This paper introduces a new computational block as an alternative to the standard ViT block that reduces the compute burdens.
arXiv Detail & Related papers (2024-03-04T19:08:20Z) - ELA: Efficient Local Attention for Deep Convolutional Neural Networks [15.976475674061287]
This paper introduces an Efficient Local Attention (ELA) method that achieves substantial performance improvements with a simple structure.
To overcome these challenges, we propose the incorporation of 1D convolution and Group Normalization feature enhancement techniques.
ELA can be seamlessly integrated into deep CNN networks such as ResNet, MobileNet, and DeepLab.
arXiv Detail & Related papers (2024-03-02T08:06:18Z) - TDAN: Top-Down Attention Networks for Enhanced Feature Selectivity in
CNNs [18.24779045808196]
We propose a lightweight top-down (TD) attention module that iteratively generates a "visual searchlight" to perform top-down channel and spatial modulation of its inputs.
Our models are more robust to changes in input resolution during inference and learn to "shift attention" by localizing individual objects or features at each computation step without any explicit supervision.
arXiv Detail & Related papers (2021-11-26T12:35:17Z) - Bayesian Attention Belief Networks [59.183311769616466]
Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks.
This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights.
We show that our method outperforms deterministic attention and state-of-the-art attention in accuracy, uncertainty estimation, generalization across domains, and adversarial attacks.
arXiv Detail & Related papers (2021-06-09T17:46:22Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
We propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network.
A co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features.
The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-05-05T02:27:25Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
We propose a unified deep framework to jointly learn both spatial attention maps and channel attention in a principled manner.
Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework.
We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters.
arXiv Detail & Related papers (2021-03-05T07:37:24Z) - Coordinate Attention for Efficient Mobile Network Design [96.40415345942186]
We propose a novel attention mechanism for mobile networks by embedding positional information into channel attention.
Unlike channel attention that transforms a feature tensor to a single feature vector via 2D global pooling, the coordinate attention factorizes channel attention into two 1D feature encoding processes.
Our coordinate attention is beneficial to ImageNet classification and behaves better in down-stream tasks, such as object detection and semantic segmentation.
arXiv Detail & Related papers (2021-03-04T09:18:02Z) - AttendNets: Tiny Deep Image Recognition Neural Networks for the Edge via
Visual Attention Condensers [81.17461895644003]
We introduce AttendNets, low-precision, highly compact deep neural networks tailored for on-device image recognition.
AttendNets possess deep self-attention architectures based on visual attention condensers.
Results show AttendNets have significantly lower architectural and computational complexity when compared to several deep neural networks.
arXiv Detail & Related papers (2020-09-30T01:53:17Z) - Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images [10.835342317692884]
The accuracy of semantic segmentation in remote sensing images has been increased significantly by deep convolutional neural networks.
This paper proposes a Multi-Attention-Network (MANet) to address these issues.
A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention.
arXiv Detail & Related papers (2020-09-03T09:08:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.