Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images
- URL: http://arxiv.org/abs/2009.02130v4
- Date: Mon, 23 Nov 2020 12:56:55 GMT
- Title: Multi-Attention-Network for Semantic Segmentation of Fine Resolution
Remote Sensing Images
- Authors: Rui Li, Shunyi Zheng, Chenxi Duan, Ce Zhang, Jianlin Su, P.M. Atkinson
- Abstract summary: The accuracy of semantic segmentation in remote sensing images has been increased significantly by deep convolutional neural networks.
This paper proposes a Multi-Attention-Network (MANet) to address these issues.
A novel attention mechanism of kernel attention with linear complexity is proposed to alleviate the large computational demand in attention.
- Score: 10.835342317692884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of remote sensing images plays an important role in a
wide range of applications including land resource management, biosphere
monitoring and urban planning. Although the accuracy of semantic segmentation
in remote sensing images has been increased significantly by deep convolutional
neural networks, several limitations exist in standard models. First, for
encoder-decoder architectures such as U-Net, the utilization of multi-scale
features causes the underuse of information, where low-level features and
high-level features are concatenated directly without any refinement. Second,
long-range dependencies of feature maps are insufficiently explored, resulting
in sub-optimal feature representations associated with each semantic class.
Third, even though the dot-product attention mechanism has been introduced and
utilized in semantic segmentation to model long-range dependencies, the large
time and space demands of attention impede the actual usage of attention in
application scenarios with large-scale input. This paper proposed a
Multi-Attention-Network (MANet) to address these issues by extracting
contextual dependencies through multiple efficient attention modules. A novel
attention mechanism of kernel attention with linear complexity is proposed to
alleviate the large computational demand in attention. Based on kernel
attention and channel attention, we integrate local feature maps extracted by
ResNeXt-101 with their corresponding global dependencies and reweight
interdependent channel maps adaptively. Numerical experiments on three
large-scale fine resolution remote sensing images captured by different
satellite sensors demonstrate the superior performance of the proposed MANet,
outperforming the DeepLab V3+, PSPNet, FastFCN, DANet, OCRNet, and other
benchmark approaches.
Related papers
- BAFNet: Bilateral Attention Fusion Network for Lightweight Semantic Segmentation of Urban Remote Sensing Images [6.153725909241752]
We propose a lightweight semantic segmentation network called bilateral attention fusion network (BAFNet) to efficiently segment high-resolution urban remote sensing images.
BAFNet outperforms advanced lightweight models in accuracy but also demonstrates comparable performance to non-lightweight state-of-the-art methods on two datasets.
arXiv Detail & Related papers (2024-09-16T13:25:42Z) - PVAFN: Point-Voxel Attention Fusion Network with Multi-Pooling Enhancing for 3D Object Detection [59.355022416218624]
integration of point and voxel representations is becoming more common in LiDAR-based 3D object detection.
We propose a novel two-stage 3D object detector, called Point-Voxel Attention Fusion Network (PVAFN)
PVAFN uses a multi-pooling strategy to integrate both multi-scale and region-specific information effectively.
arXiv Detail & Related papers (2024-08-26T19:43:01Z) - Multi-view Aggregation Network for Dichotomous Image Segmentation [76.75904424539543]
Dichotomous Image (DIS) has recently emerged towards high-precision object segmentation from high-resolution natural images.
Existing methods rely on tedious multiple encoder-decoder streams and stages to gradually complete the global localization and local refinement.
Inspired by it, we model DIS as a multi-view object perception problem and provide a parsimonious multi-view aggregation network (MVANet)
Experiments on the popular DIS-5K dataset show that our MVANet significantly outperforms state-of-the-art methods in both accuracy and speed.
arXiv Detail & Related papers (2024-04-11T03:00:00Z) - DQnet: Cross-Model Detail Querying for Camouflaged Object Detection [54.82390534024954]
A convolutional neural network (CNN) for camouflaged object detection tends to activate local discriminative regions while ignoring complete object extent.
In this paper, we argue that partial activation is caused by the intrinsic characteristics of CNN.
In order to obtain feature maps that could activate full object extent, a novel framework termed Cross-Model Detail Querying network (DQnet) is proposed.
arXiv Detail & Related papers (2022-12-16T06:23:58Z) - AF$_2$: Adaptive Focus Framework for Aerial Imagery Segmentation [86.44683367028914]
Aerial imagery segmentation has some unique challenges, the most critical one among which lies in foreground-background imbalance.
We propose Adaptive Focus Framework (AF$), which adopts a hierarchical segmentation procedure and focuses on adaptively utilizing multi-scale representations.
AF$ has significantly improved the accuracy on three widely used aerial benchmarks, as fast as the mainstream method.
arXiv Detail & Related papers (2022-02-18T10:14:45Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - CSRNet: Cascaded Selective Resolution Network for Real-time Semantic
Segmentation [18.63596070055678]
We propose a light Cascaded Selective Resolution Network (CSRNet) to improve the performance of real-time segmentation.
The proposed network builds a three-stage segmentation system, which integrates feature information from low resolution to high resolution.
Experiments on two well-known datasets demonstrate that the proposed CSRNet effectively improves the performance for real-time segmentation.
arXiv Detail & Related papers (2021-06-08T14:22:09Z) - A Holistically-Guided Decoder for Deep Representation Learning with
Applications to Semantic Segmentation and Object Detection [74.88284082187462]
One common strategy is to adopt dilated convolutions in the backbone networks to extract high-resolution feature maps.
We propose one novel holistically-guided decoder which is introduced to obtain the high-resolution semantic-rich feature maps.
arXiv Detail & Related papers (2020-12-18T10:51:49Z) - Multi-stage Attention ResU-Net for Semantic Segmentation of
Fine-Resolution Remote Sensing Images [9.398340832493457]
We propose a Linear Attention Mechanism (LAM) to address this issue.
LAM is approximately equivalent to dot-product attention with computational efficiency.
We design a Multi-stage Attention ResU-Net for semantic segmentation from fine-resolution remote sensing images.
arXiv Detail & Related papers (2020-11-29T07:24:21Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
We propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations.
We introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism.
arXiv Detail & Related papers (2020-01-09T07:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.