Entropy Mixing Networks: Enhancing Pseudo-Random Number Generators with Lightweight Dynamic Entropy Injection
- URL: http://arxiv.org/abs/2501.08031v1
- Date: Tue, 14 Jan 2025 11:36:54 GMT
- Title: Entropy Mixing Networks: Enhancing Pseudo-Random Number Generators with Lightweight Dynamic Entropy Injection
- Authors: Mohamed Aly Bouke, Omar Imhemmed Alramli, Azizol Abdullah, Nur Izura Udzir, Normalia Samian, Mohamed Othman, Zurina Mohd Hanapi,
- Abstract summary: This paper presents the Entropy Mixing Network (EMN), a novel hybrid random number generator.
It is designed to enhance randomness quality by combining deterministic pseudo-random generation with periodic entropy injection.
EMN outperforms Python's SystemRandom and MersenneTwister in critical metrics.
- Score: 4.428931150564558
- License:
- Abstract: Random number generation plays a vital role in cryptographic systems and computational applications, where uniformity, unpredictability, and robustness are essential. This paper presents the Entropy Mixing Network (EMN), a novel hybrid random number generator designed to enhance randomness quality by combining deterministic pseudo-random generation with periodic entropy injection. To evaluate its effectiveness, we propose a comprehensive assessment framework that integrates statistical tests, advanced metrics, and visual analyses, providing a holistic view of randomness quality, predictability, and computational efficiency. The results demonstrate that EMN outperforms Python's SystemRandom and MersenneTwister in critical metrics, achieving the highest Chi-squared p-value (0.9430), entropy (7.9840), and lowest predictability (-0.0286). These improvements come with a trade-off in computational performance, as EMN incurs a higher generation time (0.2602 seconds). Despite this, its superior randomness quality makes it particularly suitable for cryptographic applications where security is prioritized over speed.
Related papers
- A Pseudo-random Number Generator for Multi-Sequence Generation with Programmable Statistics [1.7243216387069678]
This paper presents a hardware PRNG that can simultaneously generate multiple uncorrelated sequences with programmable statistics tailored to specific application needs.
The PRNG occupies an area of approximately 0.0013mm2 and has an energy consumption of 0.57pJ/bit.
arXiv Detail & Related papers (2024-12-31T00:06:09Z) - Continuous-Variable Source-Independent Quantum Random Number Generator with a Single Phase-Insensitive Detector [0.5439020425819]
Quantum random number generators (QRNGs) harness quantum mechanical unpredictability to produce true randomness.
We propose a novel CV-SI-QRNG scheme with a single phase-insensitive detector, and provide security proof based on semi-definite programming (SDP)
These results demonstrate the feasibility of our framework, paving the way for practical and simple SI-QRNG implementations.
arXiv Detail & Related papers (2024-11-22T09:26:53Z) - Optimization of experimental quantum randomness expansion [0.0]
This work presents a comprehensive analysis of the design and performance optimization of a Quantum Random Number Generator (QRNG) based on Bell inequality violations.
We identify optimal ranges for $gamma$ and $p_Omega$ to balance the trade-off between randomness consumption and net randomness generation.
Our results indicate substantial developments in QRNG implementations and offer higher randomness expansion rates.
arXiv Detail & Related papers (2024-11-07T18:12:58Z) - Efficient Quality Estimation of True Random Bit-streams [5.441027708840589]
This paper reports the implementation and characterization of an on-line procedure for the detection of anomalies in a true random bit stream.
The experimental validation of the approach is performed upon the bit streams generated by a quantum, silicon-based entropy source.
arXiv Detail & Related papers (2024-09-09T12:09:17Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - A High-Quality Entropy Source Using van der Waals Heterojunction for
True Random Number Generation [0.41998444721319217]
Generators of random sequences used in high-end applications such as cryptography rely on entropy sources for their indeterminism.
We present a compact device capable of detecting discrete charge fluctuations for extracting entropy from physical processes.
We demonstrate an entropy generation rate tunable over multiple orders of magnitude and show the persistence of the underlying physical process for temperatures ranging from cryogenic to ambient conditions.
arXiv Detail & Related papers (2022-04-13T17:25:08Z) - Hybrid Random Features [60.116392415715275]
We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs)
HRFs automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest.
arXiv Detail & Related papers (2021-10-08T20:22:59Z) - Deep Transformer Networks for Time Series Classification: The NPP Safety
Case [59.20947681019466]
An advanced temporal neural network referred to as the Transformer is used within a supervised learning fashion to model the time-dependent NPP simulation data.
The Transformer can learn the characteristics of the sequential data and yield promising performance with approximately 99% classification accuracy on the testing dataset.
arXiv Detail & Related papers (2021-04-09T14:26:25Z) - RAIN: A Simple Approach for Robust and Accurate Image Classification
Networks [156.09526491791772]
It has been shown that the majority of existing adversarial defense methods achieve robustness at the cost of sacrificing prediction accuracy.
This paper proposes a novel preprocessing framework, which we term Robust and Accurate Image classificatioN(RAIN)
RAIN applies randomization over inputs to break the ties between the model forward prediction path and the backward gradient path, thus improving the model robustness.
We conduct extensive experiments on the STL10 and ImageNet datasets to verify the effectiveness of RAIN against various types of adversarial attacks.
arXiv Detail & Related papers (2020-04-24T02:03:56Z) - Optimistic Exploration even with a Pessimistic Initialisation [57.41327865257504]
Optimistic initialisation is an effective strategy for efficient exploration in reinforcement learning (RL)
In particular, in scenarios with only positive rewards, Q-values are initialised at their lowest possible values.
We propose a simple count-based augmentation to pessimistically initialised Q-values that separates the source of optimism from the neural network.
arXiv Detail & Related papers (2020-02-26T17:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.