Perturbation-efficient Zeroth-order Optimization for Hardware-friendly On-device Training
- URL: http://arxiv.org/abs/2504.20314v1
- Date: Mon, 28 Apr 2025 23:58:07 GMT
- Title: Perturbation-efficient Zeroth-order Optimization for Hardware-friendly On-device Training
- Authors: Qitao Tan, Sung-En Chang, Rui Xia, Huidong Ji, Chence Yang, Ci Zhang, Jun Liu, Zheng Zhan, Zhou Zou, Yanzhi Wang, Jin Lu, Geng Yuan,
- Abstract summary: Zeroth-order (ZO) optimization is an emerging deep neural network (DNN) training paradigm that offers computational simplicity and memory savings.<n>ZO requires generating a substantial number of Gaussian random numbers, which poses significant difficulties and even makes it infeasible for hardware platforms, such as FPGAs and ASICs.<n>We propose PeZO, a perturbation-efficient ZO framework that significantly reduces the demand for random number generation.<n>Our experiments show that PeZO reduces the required LUTs and FFs for random number generation by 48.6% and 12.7%, and saves at maximum 86% power consumption
- Score: 48.13509528824236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zeroth-order (ZO) optimization is an emerging deep neural network (DNN) training paradigm that offers computational simplicity and memory savings. However, this seemingly promising approach faces a significant and long-ignored challenge. ZO requires generating a substantial number of Gaussian random numbers, which poses significant difficulties and even makes it infeasible for hardware platforms, such as FPGAs and ASICs. In this paper, we identify this critical issue, which arises from the mismatch between algorithm and hardware designers. To address this issue, we proposed PeZO, a perturbation-efficient ZO framework. Specifically, we design random number reuse strategies to significantly reduce the demand for random number generation and introduce a hardware-friendly adaptive scaling method to replace the costly Gaussian distribution with a uniform distribution. Our experiments show that PeZO reduces the required LUTs and FFs for random number generation by 48.6\% and 12.7\%, and saves at maximum 86\% power consumption, all without compromising training performance, making ZO optimization feasible for on-device training. To the best of our knowledge, we are the first to explore the potential of on-device ZO optimization, providing valuable insights for future research.
Related papers
- AI-Driven Optimization of Hardware Overlay Configurations [0.0]
This paper presents an AI-driven approach to optimizing FPGA overlay configurations.<n>By leveraging machine learning techniques, we predict the feasibility and efficiency of different configurations before hardware compilation.
arXiv Detail & Related papers (2025-03-08T22:34:47Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
We propose a novel equation discovery method based on Kernel learning and BAyesian Spike-and-Slab priors (KBASS)
We use kernel regression to estimate the target function, which is flexible, expressive, and more robust to data sparsity and noises.
We develop an expectation-propagation expectation-maximization algorithm for efficient posterior inference and function estimation.
arXiv Detail & Related papers (2023-10-09T03:55:09Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - On-Device Training Under 256KB Memory [62.95579393237751]
We propose an algorithm-system co-design framework to make on-device training possible with only 256KB of memory.
Our framework is the first solution to enable tiny on-device training of convolutional neural networks under 256KB and 1MB Flash.
arXiv Detail & Related papers (2022-06-30T17:59:08Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - ExPAN(N)D: Exploring Posits for Efficient Artificial Neural Network
Design in FPGA-based Systems [4.2612881037640085]
This paper analyzes and ingathers the efficacy of the Posit number representation scheme and the efficiency of fixed-point arithmetic implementations for ANNs.
We propose a novel Posit to fixed-point converter for enabling high-performance and energy-efficient hardware implementations for ANNs.
arXiv Detail & Related papers (2020-10-24T11:02:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.