Optimization of experimental quantum randomness expansion
- URL: http://arxiv.org/abs/2411.04934v1
- Date: Thu, 07 Nov 2024 18:12:58 GMT
- Title: Optimization of experimental quantum randomness expansion
- Authors: Amelie Piveteau, Alban Seguinard, Piotr Mironowicz, Mohamed Bourennane,
- Abstract summary: This work presents a comprehensive analysis of the design and performance optimization of a Quantum Random Number Generator (QRNG) based on Bell inequality violations.
We identify optimal ranges for $gamma$ and $p_Omega$ to balance the trade-off between randomness consumption and net randomness generation.
Our results indicate substantial developments in QRNG implementations and offer higher randomness expansion rates.
- Score: 0.0
- License:
- Abstract: Quantum technologies provide many applications for information processing tasks that are impossible to realize within classical physics. These capabilities include such fundamental resources as generating secure, i.e. private and unpredictable random values. Yet, the problem of quantifying the amount of generated randomness is still not fully solved. This work presents a comprehensive analysis of the design and performance optimization of a Quantum Random Number Generator (QRNG) based on Bell inequality violations. We investigate key protocol parameters, including the smoothing parameter ($\epsilon_{\text{s}}$), test round probability ($\gamma$), and switching delays, and their effects on the generation rate and quality of randomness. We identify optimal ranges for $\gamma$ and $p_\Omega$ (the protocol's non-aborting probability) to balance the trade-off between randomness consumption and net randomness generation. Additionally, we explore the impact of switching delays on the system's performance, providing strategies to mitigate these effects. Our results indicate substantial developments in QRNG implementations and offer higher randomness expansion rates. The work provides practical guidelines for the efficient and secure design of QRNG systems and other cryptographic protocols.
Related papers
- Continuous-Variable Source-Independent Quantum Random Number Generator with a Single Phase-Insensitive Detector [0.5439020425819]
Quantum random number generators (QRNGs) harness quantum mechanical unpredictability to produce true randomness.
We propose a novel CV-SI-QRNG scheme with a single phase-insensitive detector, and provide security proof based on semi-definite programming (SDP)
These results demonstrate the feasibility of our framework, paving the way for practical and simple SI-QRNG implementations.
arXiv Detail & Related papers (2024-11-22T09:26:53Z) - Efficient Quality Estimation of True Random Bit-streams [5.441027708840589]
This paper reports the implementation and characterization of an on-line procedure for the detection of anomalies in a true random bit stream.
The experimental validation of the approach is performed upon the bit streams generated by a quantum, silicon-based entropy source.
arXiv Detail & Related papers (2024-09-09T12:09:17Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Non Deterministic Pseudorandom Generator for Quantum Key Distribution [0.0]
Quantum Key Distribution thrives to achieve perfect secrecy of One time Pad (OTP) through quantum processes.
One of the crucial components of QKD are Quantum Random Number Generators(QRNG) for generation of keys.
This paper proposes a pseudorandom generator based on post quantum primitives.
arXiv Detail & Related papers (2023-11-06T11:03:03Z) - Generalized Time-bin Quantum Random Number Generator with
Uncharacterized Devices [0.0]
This work analyzes evolutions in the extractable amount of randomness with increasing the Hilbert space dimension.
We investigate the generic case of time-bin encoding scheme, define various input (state preparation) and outcome (measurement) subspaces.
We demonstrate that this approach can boost the system entropy, resulting in more extractable randomness.
arXiv Detail & Related papers (2023-05-05T15:53:22Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - Security Analysis and Improvement of Source Independent Quantum Random
Number Generators with Imperfect Devices [21.524683492769526]
A quantum random number generator (QRNG) is essential in many applications, such as number simulation and cryptography.
Recently, a source-independent quantum random number generator (SI-QRNG), which can generate secure random numbers with untrusted sources, has been realized.
Here, we point out and evaluate the security loopholes of practical imperfect measurement devices in SI-QRNGs.
arXiv Detail & Related papers (2021-01-12T07:10:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.