Optimizing Speech Multi-View Feature Fusion through Conditional Computation
- URL: http://arxiv.org/abs/2501.08057v1
- Date: Tue, 14 Jan 2025 12:12:06 GMT
- Title: Optimizing Speech Multi-View Feature Fusion through Conditional Computation
- Authors: Weiqiao Shan, Yuhao Zhang, Yuchen Han, Bei Li, Xiaofeng Zhao, Yuang Li, Min Zhang, Hao Yang, Tong Xiao, Jingbo Zhu,
- Abstract summary: Self-supervised learning (SSL) features provide lightweight and versatile multi-view speech representations.
SSL features conflict with traditional spectral features like FBanks in terms of update directions.
We propose a novel generalized feature fusion framework grounded in conditional computation.
- Score: 51.23624575321469
- License:
- Abstract: Recent advancements have highlighted the efficacy of self-supervised learning (SSL) features in various speech-related tasks, providing lightweight and versatile multi-view speech representations. However, our study reveals that while SSL features expedite model convergence, they conflict with traditional spectral features like FBanks in terms of update directions. In response, we propose a novel generalized feature fusion framework grounded in conditional computation, featuring a gradient-sensitive gating network and a multi-stage dropout strategy. This framework mitigates feature conflicts and bolsters model robustness to multi-view input features. By integrating SSL and spectral features, our approach accelerates convergence and maintains performance on par with spectral models across multiple speech translation tasks on the MUSTC dataset.
Related papers
- Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.
Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.
We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - ADEM-VL: Adaptive and Embedded Fusion for Efficient Vision-Language Tuning [38.26304604660713]
ADEM-VL is an efficient vision-language method that tunes models based on pretrained large language models.
Our framework surpasses existing methods by an average accuracy of 0.77% on ScienceQA dataset.
arXiv Detail & Related papers (2024-10-23T11:31:06Z) - Mechanistic Permutability: Match Features Across Layers [4.2056926734482065]
We introduce SAE Match, a novel, data-free method for aligning SAE features across different layers of a neural network.
Our work advances the understanding of feature dynamics in neural networks and provides a new tool for mechanistic interpretability studies.
arXiv Detail & Related papers (2024-10-10T06:55:38Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - Learning Visual Representation from Modality-Shared Contrastive
Language-Image Pre-training [88.80694147730883]
We investigate a variety of Modality-Shared Contrastive Language-Image Pre-training (MS-CLIP) frameworks.
In studied conditions, we observe that a mostly unified encoder for vision and language signals outperforms all other variations that separate more parameters.
Our approach outperforms vanilla CLIP by 1.6 points in linear probing on a collection of 24 downstream vision tasks.
arXiv Detail & Related papers (2022-07-26T05:19:16Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
We propose an encoder fusion network (EFN), which transforms the visual encoder into a multi-modal feature learning network.
A co-attention mechanism is embedded in the EFN to realize the parallel update of multi-modal features.
The experiment results on four benchmark datasets demonstrate that the proposed approach achieves the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-05-05T02:27:25Z) - Multi-Knowledge Fusion for New Feature Generation in Generalized
Zero-Shot Learning [4.241513887019675]
We propose a novel generative ZSL method to learn more generalized features from multi-knowledge with continuously generated new semantics in semantic-to-visual embedding.
We show that our approach can achieve significantly better performance compared to existing state-of-the-art methods on a large number of benchmarks for several ZSL tasks.
arXiv Detail & Related papers (2021-02-23T09:11:05Z) - Spatial-Temporal Multi-Cue Network for Continuous Sign Language
Recognition [141.24314054768922]
We propose a spatial-temporal multi-cue (STMC) network to solve the vision-based sequence learning problem.
To validate the effectiveness, we perform experiments on three large-scale CSLR benchmarks.
arXiv Detail & Related papers (2020-02-08T15:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.