D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2501.08180v1
- Date: Tue, 14 Jan 2025 15:03:53 GMT
- Title: D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models
- Authors: Qian Zeng, Jie Song, Han Zheng, Hao Jiang, Mingli Song,
- Abstract summary: We propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network.
Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model.
- Score: 39.82108523014919
- License:
- Abstract: Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
Related papers
- MPQ-DM: Mixed Precision Quantization for Extremely Low Bit Diffusion Models [37.061975191553]
This paper presents MPQ-DM, a Mixed-Precision Quantization method for Diffusion Models.
To mitigate the quantization error caused by outlier severe weight channels, we propose an Outlier-Driven Mixed Quantization technique.
To robustly learn representations crossing time steps, we construct a Time-Smoothed Relation Distillation scheme.
arXiv Detail & Related papers (2024-12-16T08:31:55Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
We show that current diffusion models actually have an expressive bottleneck in backward denoising.
We introduce soft mixture denoising (SMD), an expressive and efficient model for backward denoising.
arXiv Detail & Related papers (2023-09-25T12:03:32Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
Diffusion models are powerful generative models but suffer from slow sampling.
We present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel.
arXiv Detail & Related papers (2023-05-25T17:59:42Z) - PTQD: Accurate Post-Training Quantization for Diffusion Models [22.567863065523902]
Post-training quantization of diffusion models can significantly reduce the model size and accelerate the sampling process without re-training.
Applying existing PTQ methods directly to low-bit diffusion models can significantly impair the quality of generated samples.
We propose a unified formulation for the quantization noise and diffusion perturbed noise in the quantized denoising process.
arXiv Detail & Related papers (2023-05-18T02:28:42Z) - Denoising Diffusion Samplers [41.796349001299156]
Denoising diffusion models are a popular class of generative models providing state-of-the-art results in many domains.
We explore a similar idea to sample approximately from unnormalized probability density functions and estimate their normalizing constants.
While score matching is not applicable in this context, we can leverage many of the ideas introduced in generative modeling for Monte Carlo sampling.
arXiv Detail & Related papers (2023-02-27T14:37:16Z) - Q-Diffusion: Quantizing Diffusion Models [52.978047249670276]
Post-training quantization (PTQ) is considered a go-to compression method for other tasks.
We propose a novel PTQ method specifically tailored towards the unique multi-timestep pipeline and model architecture.
We show that our proposed method is able to quantize full-precision unconditional diffusion models into 4-bit while maintaining comparable performance.
arXiv Detail & Related papers (2023-02-08T19:38:59Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks.
In practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample.
We propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs.
arXiv Detail & Related papers (2022-05-25T06:40:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.