論文の概要: Self-supervised Deep Hyperspectral Inpainting with the Plug and Play and Deep Image Prior Models
- arxiv url: http://arxiv.org/abs/2501.08195v1
- Date: Tue, 14 Jan 2025 15:18:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:25.142406
- Title: Self-supervised Deep Hyperspectral Inpainting with the Plug and Play and Deep Image Prior Models
- Title(参考訳): プラグ・プレイ・ディープ・イメージ・プレモデルを用いた自己監督型ディープ・ハイパースペクトル・インポーティング
- Authors: Shuo Li, Mehrdad Yaghoobi,
- Abstract要約: ハイパースペクトル画像は、典型的には数百の狭く連続したスペクトルバンドで構成され、それぞれが撮像されたシーンの構成に関する情報を含んでいる。
これらの画像は、様々なノイズ、歪みデータ、材料損失の影響を受け、品質と有用性を著しく低下させることができる。
本稿では,DHPの不安定性問題に対処するアルゴリズム LRS-nt-DIP を提案する。
- 参考スコア(独自算出の注目度): 6.8557067473167415
- License:
- Abstract: Hyperspectral images are typically composed of hundreds of narrow and contiguous spectral bands, each containing information regarding the material composition of the imaged scene. However, these images can be affected by various sources of noise, distortions, or data loss, which can significantly degrade their quality and usefulness. This paper introduces a convergent guaranteed algorithm, LRS-PnP-DIP(1-Lip), which successfully addresses the instability issue of DHP that has been reported before. The proposed algorithm extends the successful joint low-rank and sparse model to further exploit the underlying data structures beyond the conventional and sometimes restrictive unions of subspace models. A stability analysis guarantees the convergence of the proposed algorithm under mild assumptions , which is crucial for its application in real-world scenarios. Extensive experiments demonstrate that the proposed solution consistently delivers visually and quantitatively superior inpainting results, establishing state-of-the-art performance.
- Abstract(参考訳): ハイパースペクトル画像は、典型的には、数百の狭く連続したスペクトルバンドで構成され、それぞれが、撮像されたシーンの材料組成に関する情報を含んでいる。
しかし、これらの画像は様々なノイズ、歪み、データ損失の影響を受け、品質や有用性を著しく低下させる可能性がある。
本稿では,従来報告されてきたDHPの不安定性問題に対処する収束保証アルゴリズム LRS-PnP-DIP(1-Lip) を提案する。
提案アルゴリズムは,従来および時として制限された部分空間モデルの結合を超えて,基礎となるデータ構造をさらに活用するために,成功裏の低ランク・スパースモデルを拡張した。
安定性解析により、提案アルゴリズムは、現実のシナリオにおいてその適用に不可欠である軽度な仮定の下で収束することが保証される。
広汎な実験により、提案手法は、常に視覚的かつ定量的に優れた塗布結果を提供し、最先端の性能を確立することを実証した。
関連論文リスト
- Efficient One-Step Diffusion Refinement for Snapshot Compressive Imaging [8.819370643243012]
Coded Aperture Snapshot Spectral Imaging (CASSI)は3次元マルチスペクトル画像(MSI)を撮影するための重要な技術である
現在の最先端の手法は、主にエンドツーエンドであり、高周波の詳細を再構築する際の制限に直面している。
本稿では,Snapshot Compressive Imagingのための自己教師型適応フレームワークにおいて,新しい1段階拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-09-11T17:02:10Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Self-supervised Deep Hyperspectral Inpainting with the Sparsity and
Low-Rank Considerations [7.777433987363129]
ハイパースペクトル画像は様々なノイズ、歪み、データ損失の影響を受けやすい。
ハイパインティングアルゴリズムに2つの新しい自己教師付き画像(HSI)を導入する。
我々は,アルゴリズムの収束を保証する軽微な仮定の下で安定性解析を行う。
論文 参考訳(メタデータ) (2023-06-13T20:49:02Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
本稿では,非局所変分オートエンコーダ(textttNLVAE)という画像固有解を提案する。
textttNLVAEは,非局所領域からの非絡み合った情報を用いて高解像度画像を再構成する自己教師型戦略として導入された。
7つのベンチマークデータセットによる実験結果から,textttNLVAEモデルの有効性が示された。
論文 参考訳(メタデータ) (2022-04-02T18:43:55Z) - A Bayesian Based Deep Unrolling Algorithm for Single-Photon Lidar
Systems [4.386694688246789]
現実の応用における3次元単光子ライダーイメージングは、高騒音環境におけるイメージングを含む複数の課題に直面している。
統計や学習に基づくフレームワークに基づいて,これらの問題に対処するアルゴリズムが提案されている。
本稿では,統計的ベイズアルゴリズムを単一光子ライダーデータから頑健な画像再構成のための新しいディープラーニングアーキテクチャに展開する。
論文 参考訳(メタデータ) (2022-01-26T12:58:05Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
我々はDetail Enhanced Contrastive Loss (DECLoss)と呼ばれるCOO問題に対する明確な解決策を提案する。
DECLossはコントラスト学習のクラスタリング特性を利用して、潜在的な高分解能分布の分散を直接的に低減する。
我々は複数の超高解像度ベンチマーク上でDECLosを評価し,PSNR指向モデルの知覚品質を向上させることを実証した。
論文 参考訳(メタデータ) (2022-01-04T08:30:09Z) - Fully Unsupervised Diversity Denoising with Convolutional Variational
Autoencoders [81.30960319178725]
完全畳み込み変分オートエンコーダ(VAE)に基づく復調手法であるDivNoisingを提案する。
まず, 撮像ノイズモデルをデコーダに明示的に組み込むことにより, 教師なしの雑音発生問題をVAEフレームワーク内に定式化する手法を提案する。
このようなノイズモデルは、ノイズの多いデータから測定したり、ブートストラップしたり、トレーニング中に共同学習したりすることが可能である。
論文 参考訳(メタデータ) (2020-06-10T21:28:13Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
本稿では,一対の相補的な旅先を含むLRD画像モデルを提案する。
次に、画像CSのためのRDモデルに基づく新しいハイブリッド・プラグイン・アンド・プレイ・フレームワークを提案する。
そこで,提案したH-based image CS問題の解法として,単純で効果的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-16T08:17:44Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
ハンドヘルドデバイスが取得した光フィールド(LF)画像は通常、空間分解能の低下に悩まされる。
LF画像の高次元空間特性と複雑な幾何学構造は、従来の単一像SRよりも問題をより困難にしている。
本稿では,LF画像の各ビューを個別に超解答する新しい学習ベースLFフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-05T14:39:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。