論文の概要: Addressing the sustainable AI trilemma: a case study on LLM agents and RAG
- arxiv url: http://arxiv.org/abs/2501.08262v1
- Date: Tue, 14 Jan 2025 17:21:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:17.345493
- Title: Addressing the sustainable AI trilemma: a case study on LLM agents and RAG
- Title(参考訳): 持続可能なAIトリレンマに対処する : LLMエージェントとRAGを事例として
- Authors: Hui Wu, Xiaoyang Wang, Zhong Fan,
- Abstract要約: 大規模言語モデル(LLM)は重要な機能を示しているが、その広範なデプロイメントとより高度なアプリケーションによって、重要な持続可能性の課題が提起されている。
本稿では、持続可能なAIトリレムマの概念を提案し、AI能力、デジタルエクイティ、環境サステナビリティの緊張関係を強調する。
- 参考スコア(独自算出の注目度): 7.6212949300713015
- License:
- Abstract: Large language models (LLMs) have demonstrated significant capabilities, but their widespread deployment and more advanced applications raise critical sustainability challenges, particularly in inference energy consumption. We propose the concept of the Sustainable AI Trilemma, highlighting the tensions between AI capability, digital equity, and environmental sustainability. Through a systematic case study of LLM agents and retrieval-augmented generation (RAG), we analyze the energy costs embedded in memory module designs and introduce novel metrics to quantify the trade-offs between energy consumption and system performance. Our experimental results reveal significant energy inefficiencies in current memory-augmented frameworks and demonstrate that resource-constrained environments face disproportionate efficiency penalties. Our findings challenge the prevailing LLM-centric paradigm in agent design and provide practical insights for developing more sustainable AI systems.
- Abstract(参考訳): 大規模言語モデル(LLM)は重要な機能を示しているが、その広範な展開とより高度なアプリケーションは、特に推論エネルギー消費において重要な持続可能性課題を引き起こす。
本稿では、持続可能なAIトリレムマの概念を提案し、AI能力、デジタルエクイティ、環境サステナビリティの緊張関係を強調する。
LLMエージェントと検索拡張生成(RAG)のシステマティックケーススタディを通じて、メモリモジュール設計に埋め込まれたエネルギーコストを分析し、エネルギー消費とシステム性能のトレードオフを定量化するための新しい指標を導入する。
実験の結果,現在のメモリ拡張フレームワークのエネルギー効率は著しく低下しており,資源制約環境が不均衡な効率のペナルティに直面していることが示された。
我々の研究はエージェント設計におけるLLM中心のパラダイムに挑戦し、より持続可能なAIシステムを開発するための実践的な洞察を提供する。
関連論文リスト
- Energy-Aware Dynamic Neural Inference [39.04688735618206]
エネルギーハーベスターと有限容量エネルギーストレージを備えたオンデバイス適応型推論システムを提案する。
環境エネルギーの速度が増加するにつれて、エネルギー・信頼性を考慮した制御方式は精度を約5%向上させることが示されている。
我々は、信頼性を意識し、認識できないコントローラを理論的に保証する原則的なポリシーを導出する。
論文 参考訳(メタデータ) (2024-11-04T16:51:22Z) - The Price of Prompting: Profiling Energy Use in Large Language Models Inference [5.254805405012678]
本稿では,大規模言語モデル推論プロセスにおいて消費されるエネルギーを監視し,分析するフレームワークであるMELODIを紹介する。
MELODIを使用して生成されたデータセットは、幅広いLLMデプロイメントフレームワーク、複数の言語モデル、広範なプロンプトデータセットを含んでいる。
その結果,エネルギー効率の相違が指摘され,持続可能対策の最適化と導入の十分な範囲が示唆された。
論文 参考訳(メタデータ) (2024-07-04T12:16:28Z) - Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference [2.553456266022126]
機械学習(ML)は大きな進歩を遂げているが、その環境のフットプリントは依然として懸念されている。
本稿では,グリーンMLの環境影響の増大を認め,グリーンMLについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:59:34Z) - EcoMLS: A Self-Adaptation Approach for Architecting Green ML-Enabled Systems [1.0923877073891446]
ソフトウェアシステム内での省エネの可能性で認識されている自己適応技術は、マシンラーニングの実現可能なシステムにおいて、まだ広く研究されていない。
本研究は、インテリジェントランタイム適応によるMLSサステナビリティ向上の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-04-17T14:12:47Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - DREAM: Decentralized Reinforcement Learning for Exploration and
Efficient Energy Management in Multi-Robot Systems [14.266876062352424]
資源制約されたロボットは、しばしばエネルギー不足、不適切なタスク割り当てによる計算能力の不足、動的環境における堅牢性の欠如に悩まされる。
本稿では,マルチロボットシステムにおける探索と効率的なエネルギー管理のための分散強化学習DREAMを紹介する。
論文 参考訳(メタデータ) (2023-09-29T17:43:41Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
本稿では、自律制御と再生可能エネルギー資源のスマート電力グリッドシステムへの統合のための多エージェント深層強化学習(DRL)フレームワークを提案する。
特に,提案フレームワークは,住宅利用者に対する需要応答 (DR) と分散エネルギー管理 (DEM) を共同で検討している。
論文 参考訳(メタデータ) (2022-11-29T01:18:58Z) - Latent Diffusion Energy-Based Model for Interpretable Text Modeling [104.85356157724372]
本稿では,拡散モデルと潜時空間ESMの共生を変動学習フレームワークで導入する。
我々は,学習した潜在空間の品質を向上させるために,情報ボトルネックと合わせて幾何学的クラスタリングに基づく正規化を開発する。
論文 参考訳(メタデータ) (2022-06-13T03:41:31Z) - Reinforcement Learning through Active Inference [62.997667081978825]
アクティブ推論のアイデアが従来の強化学習アプローチをどのように強化するかを示す。
我々は、将来望まれる自由エネルギーという、意思決定のための新しい目標を開発し、実装する。
得られたアルゴリズムが探索および利用に成功し、また、スパース、ウェル形状、報酬のないいくつかの挑戦的RLベンチマークにおいて頑健な性能を達成することを実証した。
論文 参考訳(メタデータ) (2020-02-28T10:28:21Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。