AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring
- URL: http://arxiv.org/abs/2501.08266v1
- Date: Tue, 14 Jan 2025 17:26:02 GMT
- Title: AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring
- Authors: Sanjida Afrin Mou, Tasfia Noor Chowdhury, Adib Ibn Mannan, Sadia Nourin Mim, Lubana Tarannum, Tasrin Noman, Jamal Uddin Ahamed,
- Abstract summary: Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change.
This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media.
- Score: 0.0
- License:
- Abstract: Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change. Rapid and accurate flood detection and monitoring are crucial for mitigating these impacts. This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media. This study involves creating a new dataset that augments wellknown benchmark datasets with flood-specific images, enhancing the robustness of the models. The UNet, ResNet, and DeepLab v3 architectures are tested to determine their effectiveness in various environmental conditions and geographical locations, and the strengths and limitations of each model are also discussed here, providing insights into their applicability in different scenarios by predicting image segmentation masks. This fully automated approach allows these models to isolate flooded areas in images, significantly reducing processing time compared to traditional semi-automated methods. The outcome of this study is to predict segmented masks for each image effected by a flood disaster and the validation accuracy of these models. This methodology facilitates timely and continuous flood monitoring, providing vital data for emergency response teams to reduce loss of life and economic damages. It offers a significant reduction in the time required to generate flood maps, cutting down the manual processing time. Additionally, we present avenues for future research, including the integration of multimodal data sources and the development of robust deep learning architectures tailored specifically for flood detection tasks. Overall, our work contributes to the advancement of flood management strategies through innovative use of deep learning technologies.
Related papers
- UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - BlessemFlood21: Advancing Flood Analysis with a High-Resolution Georeferenced Dataset for Humanitarian Aid Support [34.91321323785173]
We introduce the BlessemFlood21 dataset to stimulate research on efficient flood detection tools.
The imagery was acquired during the 2021 Erftstadt-Blessem flooding event and consists of high-resolution and georeferenced RGB-NIR images.
In the resulting RGB dataset, the images are supplemented with detailed water masks, obtained via a semi-supervised human-in-the-loop technique.
arXiv Detail & Related papers (2024-07-06T08:58:43Z) - FloodLense: A Framework for ChatGPT-based Real-time Flood Detection [0.0]
This study addresses the vital issue of real-time flood detection and management.
It innovatively combines advanced deep learning models with Large language models (LLM), enhancing flood monitoring and response capabilities.
arXiv Detail & Related papers (2024-01-27T20:52:33Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Evaluation of Key Spatiotemporal Learners for Print Track Anomaly
Classification Using Melt Pool Image Streams [1.83192584562129]
This paper introduces research and puts into practice some leading deep learning models that can be adapted for the classification of melt pool image.
It investigates two-stream networks comprising spatial and temporal streams, a recurrent spatial network and a factorized 3D convolutional neural network.
The capacity of these models to generalize when exposed to perturbations in melt pool image data is examined using datatemporal techniques grounded in real-world process scenarios.
arXiv Detail & Related papers (2023-08-28T19:31:53Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Breaking the Limits of Remote Sensing by Simulation and Deep Learning
for Flood and Debris Flow Mapping [13.167695669500391]
We propose a framework that estimates inundation depth and debris-flow-induced topographic deformation from remote sensing imagery.
A water and debris flow simulator generates training data for various artificial disaster scenarios.
We show that regression models based on Attention U-Net and LinkNet architectures trained on such synthetic data can predict the maximum water level and topographic deformation.
arXiv Detail & Related papers (2020-06-09T10:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.