Remote Sensing Imagery for Flood Detection: Exploration of Augmentation Strategies
- URL: http://arxiv.org/abs/2504.20203v1
- Date: Mon, 28 Apr 2025 19:08:53 GMT
- Title: Remote Sensing Imagery for Flood Detection: Exploration of Augmentation Strategies
- Authors: Vladyslav Polushko, Damjan Hatic, Ronald Rösch, Thomas März, Markus Rauhut, Andreas Weinmann,
- Abstract summary: Floods cause serious problems around the world.<n>The effective use of Remote Sensing images for accurate flood detection requires specific detection methods.<n>Deep Neural Networks are employed, which are trained on specific datasets.
- Score: 1.4183971140167244
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Floods cause serious problems around the world. Responding quickly and effectively requires accurate and timely information about the affected areas. The effective use of Remote Sensing images for accurate flood detection requires specific detection methods. Typically, Deep Neural Networks are employed, which are trained on specific datasets. For the purpose of river flood detection in RGB imagery, we use the BlessemFlood21 dataset. We here explore the use of different augmentation strategies, ranging from basic approaches to more complex techniques, including optical distortion. By identifying effective strategies, we aim to refine the training process of state-of-the-art Deep Learning segmentation networks.
Related papers
- AI Driven Water Segmentation with deep learning models for Enhanced Flood Monitoring [0.0]
Flooding is a major natural hazard causing significant fatalities and economic losses annually, with increasing frequency due to climate change.<n>This study compares the performance of three deep learning models UNet, ResNet, and DeepLabv3 for pixelwise water segmentation to aid in flood detection, utilizing images from drones, in field observations, and social media.
arXiv Detail & Related papers (2025-01-14T17:26:02Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
arXiv Detail & Related papers (2024-08-28T10:07:17Z) - BlessemFlood21: Advancing Flood Analysis with a High-Resolution Georeferenced Dataset for Humanitarian Aid Support [34.91321323785173]
We introduce the BlessemFlood21 dataset to stimulate research on efficient flood detection tools.
The imagery was acquired during the 2021 Erftstadt-Blessem flooding event and consists of high-resolution and georeferenced RGB-NIR images.
In the resulting RGB dataset, the images are supplemented with detailed water masks, obtained via a semi-supervised human-in-the-loop technique.
arXiv Detail & Related papers (2024-07-06T08:58:43Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - SegNet: A Segmented Deep Learning based Convolutional Neural Network Approach for Drones Wildfire Detection [2.07180164747172]
This research addresses the pressing challenge of enhancing processing times and detection capabilities in Unmanned Aerial Vehicle (UAV)/drone imagery for global wildfire detection.
We focus on reducing feature maps to boost both time resolution and accuracy significantly advancing processing speeds and accuracy in real-time wildfire detection.
arXiv Detail & Related papers (2024-02-29T15:23:12Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
This paper seeks transferable prior knowledge from detector-friendly images.
It is based on statistical observations that, the heavily degraded regions of detector-friendly (DFUI) and underwater images have evident feature distribution gaps.
Our method with higher speeds and less parameters still performs better than transformer-based detectors.
arXiv Detail & Related papers (2023-08-24T12:32:46Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Cross-Geography Generalization of Machine Learning Methods for
Classification of Flooded Regions in Aerial Images [3.9921541182631253]
This work proposes two approaches for identifying flooded regions in UAV aerial images.
The first approach utilizes texture-based unsupervised segmentation to detect flooded areas.
The second uses an artificial neural network on the texture features to classify images as flooded and non-flooded.
arXiv Detail & Related papers (2022-10-04T13:11:44Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
Shape deformation of targets in SAR image due to random orientation and partial information loss is an essential challenge in SAR ship detection.
We propose a data augmentation method to train a deep network that is robust to partial information loss within the targets.
arXiv Detail & Related papers (2022-02-14T07:01:01Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z) - Geographical Knowledge-driven Representation Learning for Remote Sensing
Images [18.79154074365997]
We propose a Geographical Knowledge-driven Representation learning method for remote sensing images (GeoKR)
The global land cover products and geographical location associated with each remote sensing image are regarded as geographical knowledge.
A large scale pre-training dataset Levir-KR is proposed to support network pre-training.
arXiv Detail & Related papers (2021-07-12T09:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.