論文の概要: Exploring Robustness of LLMs to Paraphrasing Based on Sociodemographic Factors
- arxiv url: http://arxiv.org/abs/2501.08276v2
- Date: Fri, 04 Jul 2025 15:35:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.19249
- Title: Exploring Robustness of LLMs to Paraphrasing Based on Sociodemographic Factors
- Title(参考訳): ソシオドモグラフィー因子に基づくLLMのパラフレーズ化へのロバストさの探索
- Authors: Pulkit Arora, Akbar Karimi, Lucie Flek,
- Abstract要約: 我々は、SocialIQAデータセットを拡張して、社会デマログラフィー要因に基づく多様なパラフレーズセットを作成する。
人口統計に基づく言い回しが言語モデルの性能に大きな影響を及ぼすことがわかった。
- 参考スコア(独自算出の注目度): 7.312170216336085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite their linguistic prowess, LLMs have been shown to be vulnerable to small input perturbations. While robustness to local adversarial changes has been studied, robustness to global modifications such as different linguistic styles remains underexplored. Therefore, we take a broader approach to explore a wider range of variations across sociodemographic dimensions. We extend the SocialIQA dataset to create diverse paraphrased sets conditioned on sociodemographic factors (age and gender). The assessment aims to provide a deeper understanding of LLMs in (a) their capability of generating demographic paraphrases with engineered prompts and (b) their capabilities in interpreting real-world, complex language scenarios. We also perform a reliability analysis of the generated paraphrases looking into linguistic diversity and perplexity as well as manual evaluation. We find that demographic-based paraphrasing significantly impacts the performance of language models, indicating that the subtleties of linguistic variation remain a significant challenge. We will make the code and dataset available for future research.
- Abstract(参考訳): 言語能力にもかかわらず、LSMは小さな入力摂動に弱いことが示されている。
地域の敵対的変化に対するロバスト性は研究されているが、異なる言語スタイルのようなグローバルな変化に対するロバスト性はいまだ研究されていない。
そこで我々は,社会デミノグラフィーの次元にまたがる幅広いバリエーションを探求するために,より広いアプローチを採っている。
我々はSocialIQAデータセットを拡張し、社会デマログラフ的要因(年齢と性別)に基づく多様なパラフレーズセットを作成する。
評価は、LLMのより深い理解を提供することを目的としている。
(a)工学的な指示による人口動態のパラフレーズを生成する能力及び
b) 実世界の複雑な言語シナリオを解釈する能力。
また,言語的多様性と難易度と手動による評価を検討するために,生成したパラフレーズの信頼性解析を行った。
人口統計に基づく言い換えは言語モデルの性能に大きく影響し、言語的変化の微妙さが依然として重要な課題であることを示す。
今後の研究のために、コードとデータセットを利用可能にします。
関連論文リスト
- IMPACT: Inflectional Morphology Probes Across Complex Typologies [0.0]
IMPACTは、屈折形態学に焦点を当てた、合成的に生成された評価フレームワークである。
アラビア語、ロシア語、フィンランド語、トルコ語、ヘブライ語という5つの形態学的に豊かな言語のパフォーマンスを評価するように設計されている。
英語のパフォーマンスが強いにもかかわらず、他の言語と競合する8つの多言語LLMと、一般的でない形態素パターンを評価した。
論文 参考訳(メタデータ) (2025-06-30T14:58:23Z) - Neighbors and relatives: How do speech embeddings reflect linguistic connections across the world? [0.7168794329741259]
本研究では,XLS-R自己教師型言語識別モデルvox107-xls-r-300m-wav2vecの埋め込みを用いて106世界言語間の関係を解析した。
線形識別分析(LDA)を用いて、言語埋め込みをクラスタ化し、系譜、語彙、地理的距離と比較する。
その結果, 埋め込み型距離は従来の指標と密接に一致し, グローバルおよび局所的な類型パターンを効果的に捉えることができた。
論文 参考訳(メタデータ) (2025-06-10T08:33:34Z) - An Empirical Study of Federated Prompt Learning for Vision Language Model [50.73746120012352]
本稿では,言語素性学習と視覚素性学習の行動的差異を系統的に検討する。
クライアントスケールやアグリゲーション戦略,プロンプト長といった,さまざまなflの影響評価実験を行う。
ラベルスキューとドメインシフトが共存する複雑なシナリオにおいて、迅速な学習を促進するための戦略を検討する。
論文 参考訳(メタデータ) (2025-05-29T03:09:15Z) - Mechanistic Understanding and Mitigation of Language Confusion in English-Centric Large Language Models [49.09746599881631]
言語混乱に関する最初の機械論的解釈可能性研究について述べる。
混乱点(CP)がこの現象の中心であることを示す。
本研究は,多言語学習モデルとの比較分析により同定された少数の臨界ニューロンの編集が,混乱を著しく軽減することを示す。
論文 参考訳(メタデータ) (2025-05-22T11:29:17Z) - When Less Language is More: Language-Reasoning Disentanglement Makes LLMs Better Multilingual Reasoners [111.50503126693444]
言語固有のアブレーションは多言語推論性能を継続的に向上させることを示す。
トレーニング後のアブレーションと比較して、トレーニング不要のアブレーションは、計算オーバーヘッドを最小限に抑えながら、同等または優れた結果が得られる。
論文 参考訳(メタデータ) (2025-05-21T08:35:05Z) - Disambiguation in Conversational Question Answering in the Era of LLM: A Survey [36.37587894344511]
自然言語処理(NLP)におけるあいまいさは依然として根本的な課題である
LLM(Large Language Models)の出現により、あいまいさに対処することがさらに重要になった。
本稿では,言語駆動システムにおけるあいまいさの定義,形態,含意について考察する。
論文 参考訳(メタデータ) (2025-05-18T20:53:41Z) - LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation [1.2576388595811496]
本稿では,モデル性能推定における暗記の影響を低減する言語推論問題を生成するための枠組みを提案する。
このフレームワークを言語推論のための挑戦的なベンチマークであるlingOLY-TOOの開発に適用する。
論文 参考訳(メタデータ) (2025-03-04T19:57:47Z) - Sparse Auto-Encoder Interprets Linguistic Features in Large Language Models [40.12943080113246]
スパースオートエンコーダ(SAE)を用いた系統的・包括的因果調査を提案する。
6次元から幅広い言語的特徴を抽出する。
本稿では,FRC(Feature Representation Confidence)とFIC(Feature Intervention Confidence)の2つの指標を紹介する。
論文 参考訳(メタデータ) (2025-02-27T18:16:47Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - Benchmarking Linguistic Diversity of Large Language Models [14.824871604671467]
本稿では,言語モデルによる人間の言語的豊かさの保全を検討することの重要性を強調する。
言語多様性の観点からLLMを評価するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2024-12-13T16:46:03Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
ヘイト検出などの主観的タスクでは,人々が嫌悪感を知覚する場合には,多様なグループを表現できるLarge Language Model(LLM)の能力は不明確である。
追加の文脈をプロンプトに含めることで、LLMの地理的プライミングに対する感受性、ペルソナ属性、数値情報を分析し、様々なグループのニーズがどの程度反映されているかを評価する。
論文 参考訳(メタデータ) (2024-10-03T16:43:17Z) - Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
大規模言語モデル(LLM)の言語間コード生成能力を体系的に評価するL2CEvalを提案する。
モデルのサイズ、事前学習データ、命令チューニング、異なるプロンプトメソッドなど、それらのパフォーマンスに影響を与える可能性のある要因を分析する。
モデル性能の評価に加えて、モデルに対する信頼性校正を計測し、出力プログラムの人間による評価を行う。
論文 参考訳(メタデータ) (2023-09-29T17:57:00Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - A Survey of Large Language Models [81.06947636926638]
言語モデリングは、過去20年間、言語理解と生成のために広く研究されてきた。
近年,大規模コーパス上でのトランスフォーマーモデルの事前学習により,事前学習言語モデル (PLM) が提案されている。
パラメータスケールの違いを識別するために、研究コミュニティは大規模言語モデル (LLM) という用語を提唱した。
論文 参考訳(メタデータ) (2023-03-31T17:28:46Z) - Competence-Based Analysis of Language Models [21.43498764977656]
CALM (Competence-based Analysis of Language Models) は、特定のタスクの文脈におけるLLM能力を調べるために設計された。
我々は,勾配に基づく対向攻撃を用いた因果探究介入を行うための新しい手法を開発した。
これらの介入を用いてCALMのケーススタディを行い、様々な語彙推論タスクにおけるLCM能力の分析と比較を行う。
論文 参考訳(メタデータ) (2023-03-01T08:53:36Z) - Emergent Linguistic Structures in Neural Networks are Fragile [20.692540987792732]
大規模言語モデル (LLM) は自然言語処理タスクにおいて高い性能を示すと報告されている。
言語表現の一貫性と堅牢性を評価するための枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T15:43:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。