論文の概要: Path Loss Prediction Using Machine Learning with Extended Features
- arxiv url: http://arxiv.org/abs/2501.08306v1
- Date: Tue, 14 Jan 2025 18:44:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:14.994938
- Title: Path Loss Prediction Using Machine Learning with Extended Features
- Title(参考訳): 拡張機能付き機械学習を用いた経路損失予測
- Authors: Jonathan Ethier, Mathieu Chateauvert, Ryan G. Dempsey, Alexis Bose,
- Abstract要約: 無線通信は経路損失モデリングに依存しており、伝搬環境の物理的詳細を含む場合に最も効果的である。
このような詳細へのアクセスにより、伝搬モデルはより正確にカバレッジを予測し、無線デプロイメントにおける干渉を最小限にすることができる。
予測精度を向上する機能群を導入し,その中でも重要なのが,広範囲な環境におけるモデル一般化の維持である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Wireless communications rely on path loss modeling, which is most effective when it includes the physical details of the propagation environment. Acquiring this data has historically been challenging, but geographic information system data is becoming increasingly available with higher resolution and accuracy. Access to such details enables propagation models to more accurately predict coverage and minimize interference in wireless deployments. Machine learning-based modeling can significantly support this effort, with feature-based approaches allowing for accurate, efficient, and scalable propagation modeling. Building on previous work, we introduce an extended set of features that improves prediction accuracy while, most importantly, maintaining model generalization across a broad range of environments.
- Abstract(参考訳): 無線通信は経路損失モデリングに依存しており、伝搬環境の物理的詳細を含む場合に最も効果的である。
歴史的にこのデータを取得することは難しいが、地理的情報システムのデータは、より高解像度で利用できるようになった。
このような詳細へのアクセスにより、伝搬モデルはより正確にカバレッジを予測し、無線デプロイメントにおける干渉を最小限にすることができる。
機械学習ベースのモデリングは、この機能ベースのアプローチにより、正確で効率的でスケーラブルな伝搬モデリングを可能にする。
これまでの研究に基づいて,予測精度を向上させる機能群を導入し,その中でも重要なのが,広範囲な環境におけるモデル一般化の維持である。
関連論文リスト
- Radio Map Prediction from Aerial Images and Application to Coverage Optimization [46.870065000932016]
畳み込みニューラルネットワークを用いた経路損失無線マップの予測に着目する。
既存の無線地図データセットに対して開発された最先端モデルがこの課題に効果的に適応できることを示す。
複雑さを低減した現在の最先端技術の性能をわずかに上回る新しいモデルを導入する。
論文 参考訳(メタデータ) (2024-10-07T09:19:20Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
本稿では,時系列予測モデルTimeSieveを提案する。
提案手法では、ウェーブレット変換を用いて時系列データを前処理し、マルチスケールの特徴を効果的にキャプチャする。
本研究は,時系列予測における課題に対処するためのアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-07T15:58:12Z) - Machine Learning-Based Path Loss Modeling with Simplified Features [0.0]
Obstacle depthは、無線信号の伝搬を予測するための、合理化されているが驚くほど正確な方法を提供する。
本稿では,環境情報を用いた予測手法を提案する。
論文 参考訳(メタデータ) (2024-05-16T11:46:39Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - Orthogonal Uncertainty Representation of Data Manifold for Robust
Long-Tailed Learning [52.021899899683675]
長い尾の分布を持つシナリオでは、尾のサンプルが不足しているため、モデルが尾のクラスを識別する能力は制限される。
モデルロバストネスの長期的現象を改善するために,特徴埋め込みの直交不確実性表現(OUR)とエンドツーエンドのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-16T05:50:34Z) - Layout Sequence Prediction From Noisy Mobile Modality [53.49649231056857]
軌道予測は、自律運転やロボット工学などの応用における歩行者運動を理解する上で重要な役割を担っている。
現在の軌道予測モデルは、視覚的モダリティからの長い、完全な、正確に観察されたシーケンスに依存する。
本稿では,物体の障害物や視界外を,完全に視認できる軌跡を持つものと同等に扱う新しいアプローチであるLTrajDiffを提案する。
論文 参考訳(メタデータ) (2023-10-09T20:32:49Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Efficient Graph Neural Network Inference at Large Scale [54.89457550773165]
グラフニューラルネットワーク(GNN)は、幅広いアプリケーションで優れた性能を示している。
既存のスケーラブルなGNNは、線形伝搬を利用して特徴を前処理し、トレーニングと推論の手順を高速化する。
本稿では,そのトポロジ情報に基づいて各ノードに対してパーソナライズされた伝搬順序を生成する適応的伝搬順序法を提案する。
論文 参考訳(メタデータ) (2022-11-01T14:38:18Z) - Goal-driven Self-Attentive Recurrent Networks for Trajectory Prediction [31.02081143697431]
人間の軌道予測は、自動運転車、社会認識ロボット、およびビデオ監視アプリケーションの主要な構成要素である。
本稿では,過去の観測位置のみに作用する軽量な注意型リカレントバックボーンを提案する。
我々はU-Netアーキテクチャに基づく共通のゴールモジュールを使用し、シーン準拠の目的地を予測するために意味情報を抽出する。
論文 参考訳(メタデータ) (2022-04-25T11:12:37Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。