論文の概要: Machine Learning-Based Path Loss Modeling with Simplified Features
- arxiv url: http://arxiv.org/abs/2405.10006v1
- Date: Thu, 16 May 2024 11:46:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:31:57.678466
- Title: Machine Learning-Based Path Loss Modeling with Simplified Features
- Title(参考訳): 単純化された特徴を用いた機械学習に基づく経路損失モデリング
- Authors: Jonathan Ethier, Mathieu Chateauvert,
- Abstract要約: Obstacle depthは、無線信号の伝搬を予測するための、合理化されているが驚くほど正確な方法を提供する。
本稿では,環境情報を用いた予測手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Propagation modeling is a crucial tool for successful wireless deployments and spectrum planning with the demand for high modeling accuracy continuing to grow. Recognizing that detailed knowledge of the physical environment (terrain and clutter) is essential, we propose a novel approach that uses environmental information for predictions. Instead of relying on complex, detail-intensive models, we explore the use of simplified scalar features involving the total obstruction depth along the direct path from transmitter to receiver. Obstacle depth offers a streamlined, yet surprisingly accurate, method for predicting wireless signal propagation, providing a practical solution for efficient and effective wireless network planning.
- Abstract(参考訳): 伝搬モデリングは、高いモデリング精度の需要が拡大し続けながら、ワイヤレスデプロイメントとスペクトルプランニングを成功させるための重要なツールである。
物理的環境(テラインとクラッタ)の詳細な知識が不可欠であることを認識し,予測に環境情報を利用する新しいアプローチを提案する。
複雑な詳細集約モデルに頼る代わりに、送信機から受信機への直接経路に沿った全障害物深さを含む単純化されたスカラー特徴の利用について検討する。
Obstacle depthは、無線信号の伝搬を予測するための合理化された、驚くほど正確な方法を提供し、効率的かつ効果的な無線ネットワーク計画のための実用的なソリューションを提供する。
関連論文リスト
- Physics-Informed Generative Modeling of Wireless Channels [7.394776649238597]
無線チャネルの物理関連圧縮性と疎ベイズ生成モデル(SBGM)を組み合わせたモデルを提案する。
本手法は,既定のオンライン操作中にアクセスポイント(AP)が受信した圧縮観測から学習することができる。
物理的に解釈可能で、再トレーニングを必要とせずに任意のシステム構成に一般化する。
論文 参考訳(メタデータ) (2025-02-14T13:05:48Z) - Path Loss Prediction Using Machine Learning with Extended Features [0.0]
無線通信は経路損失モデリングに依存しており、伝搬環境の物理的詳細を含む場合に最も効果的である。
このような詳細へのアクセスにより、伝搬モデルはより正確にカバレッジを予測し、無線デプロイメントにおける干渉を最小限にすることができる。
予測精度を向上する機能群を導入し,その中でも重要なのが,広範囲な環境におけるモデル一般化の維持である。
論文 参考訳(メタデータ) (2025-01-14T18:44:35Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
Reconfigurable Intelligent Surfaces(RIS)の新たな技術は、スマート無線環境の実現手段として準備されている。
RISは、無線媒体上の電磁信号の伝搬を動的に制御するための、高度にスケーラブルで低コストで、ハードウェア効率が高く、ほぼエネルギーニュートラルなソリューションを提供する。
このような再構成可能な無線環境におけるRISの密配置に関する大きな課題の1つは、複数の準曲面の効率的な構成である。
論文 参考訳(メタデータ) (2022-05-08T06:21:33Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
深層強化学習(RL)に基づく情報経路計画のための新しい手法を提案する。
本手法は,モンテカルロ木探索とオフライン学習ニューラルネットワークを組み合わせた情報知覚行動の予測を行う。
ミッション中にトレーニングされたネットワークをデプロイすることにより、限られた計算資源を持つ物理プラットフォーム上で、サンプル効率の良いオンラインリプランニングが可能になる。
論文 参考訳(メタデータ) (2021-09-28T09:00:55Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
本稿では,1ビット計測から情報シンボルを復元する「LoRD-Net」というディープ検出器を提案する。
LoRD-Netは、関心のシグナルを回復するためのタスクベースのアーキテクチャである。
無線通信における1ビット信号回復のためのレシーバアーキテクチャの評価を行った。
論文 参考訳(メタデータ) (2021-02-05T04:26:05Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
本研究では,スムースとディテールを段階的に分割・収束的に処理する,目的・解釈可能なディテール・ファイダリティ・アテンション・ネットワークを提案する。
特に,詳細推論において顕著な解釈可能な特徴表現のためのヘシアンフィルタを提案する。
実験により,提案手法は最先端手法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-09-28T08:31:23Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。