論文の概要: MiniMax-01: Scaling Foundation Models with Lightning Attention
- arxiv url: http://arxiv.org/abs/2501.08313v1
- Date: Tue, 14 Jan 2025 18:50:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:27:08.741019
- Title: MiniMax-01: Scaling Foundation Models with Lightning Attention
- Title(参考訳): MiniMax-01:Lightning注意によるファンデーションモデルのスケーリング
- Authors: MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie, Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lianfei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu, Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song, Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong, Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang, Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang, Zijia Wu,
- Abstract要約: MiniMax-Text-01とMiniMax-VL-01は、より長いコンテキストを処理するのに優れた機能を提供する。
MiniMax-Text-01は、トレーニング中に最大100万のトークンに到達でき、推論時に400万のトークンを安価な価格で外挿できる。
私たちのビジョン言語モデルであるMiniMax-VL-01は、512億のビジョン言語トークンによる継続的なトレーニングによって構築されます。
- 参考スコア(独自算出の注目度): 59.38940023647236
- License:
- Abstract: We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
- Abstract(参考訳): 我々は,MiniMax-Text-01とMiniMax-VL-01を含むMiniMax-01シリーズを紹介する。
その中核は雷の注意と効率的なスケーリングにある。
計算容量を最大化するために、Mixture of Experts (MoE)と統合し、32のエキスパートと46億の合計パラメータを持つモデルを作成し、各トークンに対して459億が活性化される。
我々は、MoEと雷の注意のための最適化された並列戦略と高度に効率的な計算・通信重複技術を開発した。
このアプローチは、数百万のトークンにまたがるコンテキストにわたって、数十億のパラメータを持つモデルに対して、効率的なトレーニングと推論を可能にする。
MiniMax-Text-01のコンテキストウィンドウは、トレーニング中に最大100万のトークンに到達し、安価なコストで推論中に400万のトークンを外挿することができる。
私たちのビジョン言語モデルであるMiniMax-VL-01は、512億のビジョン言語トークンによる継続的なトレーニングによって構築されます。
GPT-4oやClaude-3.5-Sonnetのような最先端モデルの性能に一致し、20~32倍のコンテキストウィンドウを提供する。
MiniMax-01 を https://github.com/MiniMax-AI で公開しています。
関連論文リスト
- Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL は 1B から 4B までのパラメータを持つ一連の MLLM であり、パラメータの 5% しか持たない性能の90% を達成している。
我々は,ダウンストリームタスクにおける特化モデルの転送と性能向上を可能にする,Mini-InternVLの統一適応フレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-21T17:58:20Z) - 1.5-Pints Technical Report: Pretraining in Days, Not Months -- Your Language Model Thrives on Quality Data [0.0]
本稿では,9日間で言語モデル"1.5-Pints"を事前学習するための計算効率のよい手法を提案する。
MT-Bench(人間の判断をエミュレートするベンチマーク)に基づいて、1.5-PintsはAppleのOpenELMとMicrosoftのPhiを上回っている。
これは、自動化された人間によるレビューと手動によるレビューを組み合わせて、57億トークンのトレーニング済みデータセットを慎重にキュレートすることで達成される。
論文 参考訳(メタデータ) (2024-08-07T02:14:52Z) - Dense Training, Sparse Inference: Rethinking Training of Mixture-of-Experts Language Models [62.4691912312317]
Mixture-of-Experts (MoE)言語モデルは、性能を犠牲にすることなく、高密度モデルと比較して計算コストを2~4ドル削減することができる。
本稿では,強力な計算とパラメータ効率を実現するMOEモデル(DS-MoE)のためのハイブリッド密集型トレーニングおよびスパース推論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-08T14:39:49Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
視覚的トークンに対する注意計算は,LVLMの深い層において極めて非効率であることがわかった。
本稿では,計算効率の最適化を目的とした多用途プラグアンドプレイ方式であるFastVを紹介する。
論文 参考訳(メタデータ) (2024-03-11T14:35:32Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Beyond Distillation: Task-level Mixture-of-Experts for Efficient
Inference [17.97893143555333]
Sparse Mixture-of-Experts (MoE) は、トレーニング計算の比例的な増加を伴わずに、多言語翻訳モデルを数十億のパラメータに拡張する手法として成功している。
本研究では, 蒸留をバイパスするためのMoEモデルにおいて, 異なる粒度(トークン, 文, タスク)でのルーティング戦略について検討する。
WMTとWebスケールのデータセットの実験から、タスクレベルのルーティング(task-MoE)によって、大規模なスパースモデルからより小さく、準備の整ったサブネットワークを抽出できることが示唆された。
論文 参考訳(メタデータ) (2021-09-24T20:42:16Z) - CPM-2: Large-scale Cost-effective Pre-trained Language Models [71.59893315671997]
本稿では, PLM を用いた事前学習, 微調整, 推論の効率性問題に対処するための費用対効果技術について述べる。
我々は,既存のPLMをスクラッチからトレーニングする代わりに活用することで,事前学習プロセスの促進を目的とした知識継承を導入する。
計算資源が限られている大規模PLMに対して,新しい推論ツールキット,すなわちInfMoEを実装した。
論文 参考訳(メタデータ) (2021-06-20T15:43:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。