論文の概要: ADAM: An AI Reasoning and Bioinformatics Model for Alzheimer's Disease Detection and Microbiome-Clinical Data Integration
- arxiv url: http://arxiv.org/abs/2501.08324v2
- Date: Fri, 02 May 2025 03:07:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 13:22:23.343533
- Title: ADAM: An AI Reasoning and Bioinformatics Model for Alzheimer's Disease Detection and Microbiome-Clinical Data Integration
- Title(参考訳): ADAM: アルツハイマー病の検出とマイクロバイオーム・クリニカルデータ統合のためのAI推論とバイオインフォマティクスモデル
- Authors: Ziyuan Huang, Vishaldeep Kaur Sekhon, Roozbeh Sadeghian, Maria L. Vaida, Cynthia Jo, Doyle Ward, Vanni Bucci, John P. Haran,
- Abstract要約: Alzheimer's Disease Analysis Model (ADAM)は、マルチモーダルデータの統合と解析を目的とした多エージェント推論大言語モデル(LLM)フレームワークである。
ADAMは多様なデータソースから洞察を生成し、文献駆動の証拠で結果を文脈化します。
- 参考スコア(独自算出の注目度): 4.693680473621709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Alzheimer's Disease Analysis Model (ADAM) is a multi-agent reasoning large language model (LLM) framework designed to integrate and analyze multimodal data, including microbiome profiles, clinical datasets, and external knowledge bases, to enhance the understanding and classification of Alzheimer's disease (AD). By leveraging the agentic system with LLM, ADAM produces insights from diverse data sources and contextualizes the findings with literature-driven evidence. A comparative evaluation with XGBoost revealed a significantly improved mean F1 score and significantly reduced variance for ADAM, highlighting its robustness and consistency, particularly when utilizing human biological data. Although currently tailored for binary classification tasks with two data modalities, future iterations will aim to incorporate additional data types, such as neuroimaging and peripheral biomarkers, and expand them to predict disease progression, thereby broadening ADAM's scalability and applicability in AD research and diagnostic applications.
- Abstract(参考訳): アルツハイマー病解析モデル(英: Alzheimer's Disease Analysis Model、ADAM)は、アルツハイマー病(AD)の理解と分類を強化するために、マイクロバイオームプロファイル、臨床データセット、および外部知識ベースを含むマルチモーダルデータの統合と分析を目的として設計された多エージェント推論大言語モデル(LLM)フレームワークである。
エージェントシステムをLCMで活用することにより、ADAMは多様なデータソースからの洞察を生成し、文献駆動の証拠で結果を文脈化する。
XGBoostとの比較評価では, 平均F1スコアが有意に向上し, ADAMのばらつきが著しく減少し, その堅牢性と一貫性, 特にヒトの生物学的データの利用が顕著であった。
現在、2つのデータモダリティを持つバイナリ分類タスク用に調整されているが、将来のイテレーションは、ニューロイメージングや周辺バイオマーカーのような追加のデータタイプを導入し、病気の進行を予測するよう拡張することを目的としている。
関連論文リスト
- Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach [36.92842246372894]
Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN)は、メッセンジャーRNA、マイクロRNA配列、DNAメチル化サンプルを利用するディープラーニングフレームワークである。
グラフに基づく深層学習とマルチオミクスデータを統合することにより,提案手法は頑健な予測性能と解釈可能性を示す。
論文 参考訳(メタデータ) (2025-03-29T02:14:05Z) - AlzheimerRAG: Multimodal Retrieval Augmented Generation for PubMed articles [2.4063592468412276]
マルチモーダル検索・拡張生成(RAG)アプリケーションは,情報検索と生成モデルの強みを両立させる能力を約束している。
本稿では, バイオメディカル研究用マルチモーダルRAGパイプラインツールであるAlzheimerRAGを紹介する。
論文 参考訳(メタデータ) (2024-12-21T16:59:00Z) - GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
アルツハイマー病(英語: Alzheimer's Disease、AD)は、軽度認知障害(MCI)から進行する可逆性神経変性疾患である。
生成特徴抽出(GFE)に基づく分類器GFE-Mambaを紹介する。
評価尺度、MRI、PETのデータを統合し、より深いマルチモーダル融合を可能にする。
GFE-MambaモデルがMCIからADへの変換予測に有効であることを示す。
論文 参考訳(メタデータ) (2024-07-22T15:22:33Z) - An interpretable generative multimodal neuroimaging-genomics framework for decoding Alzheimer's disease [13.213387075528017]
アルツハイマー病(英語: Alzheimer's disease、AD)は認知能力の低下が進行する認知症である。
構造的MRIと機能的MRIを利用して,病原性GMと機能的ネットワーク接続の変化を調査した。
本稿では,Cycle GANを用いた生成モジュールを用いたDLに基づく新しい分類手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T07:31:47Z) - Intelligent Diagnosis of Alzheimer's Disease Based on Machine Learning [24.467566885575998]
この研究は、アルツハイマー病神経画像イニシアチブ(ADNI)データセットに基づいている。
アルツハイマー病(AD)の早期発見と進行の解明を目的とする。
論文 参考訳(メタデータ) (2024-02-13T15:43:30Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self
Attention for multi-omics integration with incomplete multi-omics data [47.2764293508916]
不均一・高次元マルチオミクスデータの統合は、遺伝データの理解においてますます重要になっている。
マルチオミクスデータ統合を行う際に直面する障害のひとつは、機器の感度とコストによる未ペアリングマルチオミクスデータの存在である。
クロスオミクスを用いたマルチオミクス統合のための深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-04-12T00:22:18Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Tensor-Based Multi-Modality Feature Selection and Regression for
Alzheimer's Disease Diagnosis [25.958167380664083]
アルツハイマー病(AD)と軽度認知障害(MCI)の診断・バイオマーカー同定のための新しいテンソルベース多モード特徴選択と回帰法を提案する。
3つの画像モダリティを用いたADNIデータ解析における本手法の実用的利点について述べる。
論文 参考訳(メタデータ) (2022-09-23T02:17:27Z) - Benchmarking Machine Learning Robustness in Covid-19 Genome Sequence
Classification [109.81283748940696]
我々は、IlluminaやPacBioといった一般的なシークエンシングプラットフォームのエラープロファイルを模倣するために、SARS-CoV-2ゲノム配列を摂動する方法をいくつか紹介する。
シミュレーションに基づくいくつかのアプローチは、入力シーケンスに対する特定の敵攻撃に対する特定の埋め込み手法に対して、他の手法よりも堅牢(かつ正確)であることを示す。
論文 参考訳(メタデータ) (2022-07-18T19:16:56Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。