論文の概要: Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach
- arxiv url: http://arxiv.org/abs/2503.22939v2
- Date: Sat, 26 Apr 2025 20:20:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 18:43:11.27635
- Title: Graph Kolmogorov-Arnold Networks for Multi-Cancer Classification and Biomarker Identification, An Interpretable Multi-Omics Approach
- Title(参考訳): マルチキャリア分類とバイオマーカー同定のためのグラフコルモゴロフ・アルノルドネットワーク : 解釈可能なマルチオミクスアプローチ
- Authors: Fadi Alharbi, Nishant Budhiraja, Aleksandar Vakanski, Boyu Zhang, Murtada K. Elbashir, Hrshith Gudur, Mohanad Mohammed,
- Abstract要約: Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN)は、メッセンジャーRNA、マイクロRNA配列、DNAメチル化サンプルを利用するディープラーニングフレームワークである。
グラフに基づく深層学習とマルチオミクスデータを統合することにより,提案手法は頑健な予測性能と解釈可能性を示す。
- 参考スコア(独自算出の注目度): 36.92842246372894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of heterogeneous multi-omics datasets at a systems level remains a central challenge for developing analytical and computational models in precision cancer diagnostics. This paper introduces Multi-Omics Graph Kolmogorov-Arnold Network (MOGKAN), a deep learning framework that utilizes messenger-RNA, micro-RNA sequences, and DNA methylation samples together with Protein-Protein Interaction (PPI) networks for cancer classification across 31 different cancer types. The proposed approach combines differential gene expression with DESeq2, Linear Models for Microarray (LIMMA), and Least Absolute Shrinkage and Selection Operator (LASSO) regression to reduce multi-omics data dimensionality while preserving relevant biological features. The model architecture is based on the Kolmogorov-Arnold theorem principle and uses trainable univariate functions to enhance interpretability and feature analysis. MOGKAN achieves classification accuracy of 96.28 percent and exhibits low experimental variability in comparison to related deep learning-based models. The biomarkers identified by MOGKAN were validated as cancer-related markers through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. By integrating multi-omics data with graph-based deep learning, our proposed approach demonstrates robust predictive performance and interpretability with potential to enhance the translation of complex multi-omics data into clinically actionable cancer diagnostics.
- Abstract(参考訳): システムレベルでの不均一なマルチオミクスデータセットを統合することは、精度の高いがん診断における分析モデルや計算モデルを開発する上で、依然として中心的な課題である。
本稿では, メッセンジャーRNA, マイクロRNA配列, DNAメチル化サンプルを用いた深層学習フレームワークであるMulti-Omics Graph Kolmogorov-Arnold Network(MOGKAN)と, 31種類のがんの分類のためのProtein Interaction(PPI)ネットワークを紹介する。
提案手法は,DESq2,Linear Models for Microarray (LIMMA),Least Absolute Shrinkage and Selection Operator (LASSO)レグレッションと相まって,生物学的特徴を保ちながらマルチオミクスデータの次元を減少させる。
モデルアーキテクチャはコルモゴロフ=アルノルドの定理に基づいており、解釈可能性と特徴解析を強化するために訓練可能なユニバリケート関数を使用する。
MOGKANは96.28パーセントの分類精度を達成し、関連するディープラーニングベースモデルと比較して実験変数が低い。
遺伝子オントロジー(GO)および京都遺伝子ゲノム百科事典(KEGG)の濃縮分析により,MOGKANが同定したバイオマーカーを癌関連マーカーとして検証した。
グラフに基づく深層学習とマルチオミクスデータを統合することにより,複雑なマルチオミクスデータの臨床的に実行可能ながん診断への変換を促進する可能性を備えた,堅牢な予測性能と解釈可能性を示す。
関連論文リスト
- MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
病理組織学と転写学は、腫瘍学の基本的なモダリティであり、疾患の形態学的および分子的側面を包含している。
モーダルアライメントと保持を両立させる新しいマルチモーダル表現学習法であるMIRRORを提案する。
がんの亜型化と生存分析のためのTCGAコホートに関する広範囲な評価は,MIRRORの優れた性能を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-03-01T07:02:30Z) - Comparative Analysis of Multi-Omics Integration Using Advanced Graph Neural Networks for Cancer Classification [40.45049709820343]
マルチオミクスデータ統合は、高次元性、データ複雑さ、および様々なオミクスタイプの異なる特徴により、大きな課題を生じさせる。
本研究では、グラフ畳み込みネットワーク(GCN)、グラフアテンションネットワーク(GAT)、グラフトランスフォーマーネットワーク(GTN)に基づくマルチオミクス(MO)統合のための3つのグラフニューラルネットワークアーキテクチャを評価する。
論文 参考訳(メタデータ) (2024-10-05T16:17:44Z) - Stacked ensemble\-based mutagenicity prediction model using multiple modalities with graph attention network [0.9736758288065405]
変異原性は、様々なネガティブな結果をもたらす遺伝子変異と関連しているため、懸念される。
本研究では,新しいアンサンブルに基づく変異原性予測モデルを提案する。
論文 参考訳(メタデータ) (2024-09-03T09:14:21Z) - LASSO-MOGAT: A Multi-Omics Graph Attention Framework for Cancer Classification [41.94295877935867]
本稿では,メッセンジャーRNA,マイクロRNA,DNAメチル化データを統合し,31種類のがんを分類するグラフベースのディープラーニングフレームワークLASSO-MOGATを紹介する。
論文 参考訳(メタデータ) (2024-08-30T16:26:04Z) - Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - IGCN: Integrative Graph Convolution Networks for patient level insights and biomarker discovery in multi-omics integration [2.0971479389679337]
本稿では,癌分子サブタイプとバイオメディカル分類のための新しい統合ニューラルネットワークアプローチを提案する。
IGCNは、特定のクラスを予測するために患者に対してどのタイプのオミクスがより強調されるかを特定することができる。
IGCNは、様々なオミクスデータタイプから重要なバイオマーカーを特定できる。
論文 参考訳(メタデータ) (2024-01-31T05:52:11Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
分子に固有の二重レベル構造を考慮に入れたGODEを導入する。
分子は固有のグラフ構造を持ち、より広い分子知識グラフ内のノードとして機能する。
異なるグラフ構造上の2つのGNNを事前学習することにより、GODEは対応する知識グラフサブ構造と分子構造を効果的に融合させる。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Topological Data Analysis of copy number alterations in cancer [70.85487611525896]
癌ゲノム情報に含まれる情報を新しいトポロジに基づくアプローチで捉える可能性を探る。
本手法は, 癌体性遺伝データに有意な低次元表現を抽出する可能性を秘めている。
論文 参考訳(メタデータ) (2020-11-22T17:31:23Z) - The scalable Birth-Death MCMC Algorithm for Mixed Graphical Model
Learning with Application to Genomic Data Integration [0.0]
本稿では,異なるタイプのマルチオミックデータを解析するための混合グラフィカルモデルを提案する。
モデル選択結果の計算効率と精度の両面で,本手法が優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-08T16:34:58Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。