Religious Bias Landscape in Language and Text-to-Image Models: Analysis, Detection, and Debiasing Strategies
- URL: http://arxiv.org/abs/2501.08441v1
- Date: Tue, 14 Jan 2025 21:10:08 GMT
- Title: Religious Bias Landscape in Language and Text-to-Image Models: Analysis, Detection, and Debiasing Strategies
- Authors: Ajwad Abrar, Nafisa Tabassum Oeshy, Mohsinul Kabir, Sophia Ananiadou,
- Abstract summary: The widespread adoption of language models highlights the need for critical examinations of their inherent biases.
This study systematically investigates religious bias in both language models and text-to-image generation models.
- Score: 16.177734242454193
- License:
- Abstract: Note: This paper includes examples of potentially offensive content related to religious bias, presented solely for academic purposes. The widespread adoption of language models highlights the need for critical examinations of their inherent biases, particularly concerning religion. This study systematically investigates religious bias in both language models and text-to-image generation models, analyzing both open-source and closed-source systems. We construct approximately 400 unique, naturally occurring prompts to probe language models for religious bias across diverse tasks, including mask filling, prompt completion, and image generation. Our experiments reveal concerning instances of underlying stereotypes and biases associated disproportionately with certain religions. Additionally, we explore cross-domain biases, examining how religious bias intersects with demographic factors such as gender, age, and nationality. This study further evaluates the effectiveness of targeted debiasing techniques by employing corrective prompts designed to mitigate the identified biases. Our findings demonstrate that language models continue to exhibit significant biases in both text and image generation tasks, emphasizing the urgent need to develop fairer language models to achieve global acceptability.
Related papers
- Scaling for Fairness? Analyzing Model Size, Data Composition, and Multilinguality in Vision-Language Bias [14.632649933582648]
We investigate how dataset composition, model size, and multilingual training affect gender and racial bias in a popular VLM, CLIP, and its open source variants.
To assess social perception bias, we measure the zero-shot performance on face images featuring socially charged terms.
arXiv Detail & Related papers (2025-01-22T21:08:30Z) - Biased or Flawed? Mitigating Stereotypes in Generative Language Models by Addressing Task-Specific Flaws [12.559028963968247]
generative language models often reflect and amplify societal biases in their outputs.
We propose a targeted stereotype mitigation framework that implicitly mitigates observed stereotypes in generative models.
We reduce stereotypical outputs by over 60% across multiple dimensions.
arXiv Detail & Related papers (2024-12-16T03:29:08Z) - Spoken Stereoset: On Evaluating Social Bias Toward Speaker in Speech Large Language Models [50.40276881893513]
This study introduces Spoken Stereoset, a dataset specifically designed to evaluate social biases in Speech Large Language Models (SLLMs)
By examining how different models respond to speech from diverse demographic groups, we aim to identify these biases.
The findings indicate that while most models show minimal bias, some still exhibit slightly stereotypical or anti-stereotypical tendencies.
arXiv Detail & Related papers (2024-08-14T16:55:06Z) - Multilingual Text-to-Image Generation Magnifies Gender Stereotypes and Prompt Engineering May Not Help You [64.74707085021858]
We show that multilingual models suffer from significant gender biases just as monolingual models do.
We propose a novel benchmark, MAGBIG, intended to foster research on gender bias in multilingual models.
Our results show that not only do models exhibit strong gender biases but they also behave differently across languages.
arXiv Detail & Related papers (2024-01-29T12:02:28Z) - Exploring Social Bias in Downstream Applications of Text-to-Image
Foundation Models [72.06006736916821]
We use synthetic images to probe two applications of text-to-image models, image editing and classification, for social bias.
Using our methodology, we uncover meaningful and significant inter-sectional social biases in textitStable Diffusion, a state-of-the-art open-source text-to-image model.
Our findings caution against the uninformed adoption of text-to-image foundation models for downstream tasks and services.
arXiv Detail & Related papers (2023-12-05T14:36:49Z) - Exposing Bias in Online Communities through Large-Scale Language Models [3.04585143845864]
This work uses the flaw of bias in language models to explore the biases of six different online communities.
The bias of the resulting models is evaluated by prompting the models with different demographics and comparing the sentiment and toxicity values of these generations.
This work not only affirms how easily bias is absorbed from training data but also presents a scalable method to identify and compare the bias of different datasets or communities.
arXiv Detail & Related papers (2023-06-04T08:09:26Z) - Debiasing Vision-Language Models via Biased Prompts [79.04467131711775]
We propose a general approach for debiasing vision-language foundation models by projecting out biased directions in the text embedding.
We show that debiasing only the text embedding with a calibrated projection matrix suffices to yield robust classifiers and fair generative models.
arXiv Detail & Related papers (2023-01-31T20:09:33Z) - An Analysis of Social Biases Present in BERT Variants Across Multiple
Languages [0.0]
We investigate the bias present in monolingual BERT models across a diverse set of languages.
We propose a template-based method to measure any kind of bias, based on sentence pseudo-likelihood.
We conclude that current methods of probing for bias are highly language-dependent.
arXiv Detail & Related papers (2022-11-25T23:38:08Z) - Challenges in Measuring Bias via Open-Ended Language Generation [1.5552869983952944]
We analyze how specific choices of prompt sets, metrics, automatic tools and sampling strategies affect bias results.
We provide recommendations for reporting biases in open-ended language generation.
arXiv Detail & Related papers (2022-05-23T19:57:15Z) - Probing Contextual Language Models for Common Ground with Visual
Representations [76.05769268286038]
We design a probing model that evaluates how effective are text-only representations in distinguishing between matching and non-matching visual representations.
Our findings show that language representations alone provide a strong signal for retrieving image patches from the correct object categories.
Visually grounded language models slightly outperform text-only language models in instance retrieval, but greatly under-perform humans.
arXiv Detail & Related papers (2020-05-01T21:28:28Z) - Towards Controllable Biases in Language Generation [87.89632038677912]
We develop a method to induce societal biases in generated text when input prompts contain mentions of specific demographic groups.
We analyze two scenarios: 1) inducing negative biases for one demographic and positive biases for another demographic, and 2) equalizing biases between demographics.
arXiv Detail & Related papers (2020-05-01T08:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.