論文の概要: Head Motion Degrades Machine Learning Classification of Alzheimer's Disease from Positron Emission Tomography
- arxiv url: http://arxiv.org/abs/2501.08459v1
- Date: Tue, 14 Jan 2025 22:07:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:51:32.197389
- Title: Head Motion Degrades Machine Learning Classification of Alzheimer's Disease from Positron Emission Tomography
- Title(参考訳): 頭部運動によるアルツハイマー病の機械学習分類 : ポジトロン断層法による検討
- Authors: Eléonore V. Lieffrig, Takuya Toyonaga, Jiazhen Zhang, John A. Onofrey,
- Abstract要約: データ取得時の頭部の動きは画質を劣化させる。
PET画像のみに基づくバイナリ分類アルゴリズムを提案する。
動作補正画像の認知正規化やAD化の精度が高いことが判明した。
- 参考スコア(独自算出の注目度): 0.6999740786886536
- License:
- Abstract: Brain positron emission tomography (PET) imaging is broadly used in research and clinical routines to study, diagnose, and stage Alzheimer's disease (AD). However, its potential cannot be fully exploited yet due to the lack of portable motion correction solutions, especially in clinical settings. Head motion during data acquisition has indeed been shown to degrade image quality and induces tracer uptake quantification error. In this study, we demonstrate that it also biases machine learning-based AD classification. We start by proposing a binary classification algorithm solely based on PET images. We find that it reaches a high accuracy in classifying motion corrected images into cognitive normal or AD. We demonstrate that the classification accuracy substantially decreases when images lack motion correction, thereby limiting the algorithm's effectiveness and biasing image interpretation. We validate these findings in cohorts of 128 $^{11}$C-UCB-J and 173 $^{18}$F-FDG scans, two tracers highly relevant to the study of AD. Classification accuracies decreased by 10% and 5% on 20 $^{18}$F-FDG and 20 $^{11}$C-UCB-J testing cases, respectively. Our findings underscore the critical need for efficient motion correction methods to make the most of the diagnostic capabilities of PET-based machine learning.
- Abstract(参考訳): 脳ポジトロン・エミッション・トモグラフィ(PET)イメージングは、アルツハイマー病(AD)の研究、診断、ステージ研究に広く用いられている。
しかし、携帯型運動補正ソリューションが欠如しているため、特に臨床環境では、その可能性を十分に活用することはできない。
データ取得時の頭部の動きは、画像の品質を低下させ、トレーサの取り込み量化誤差を引き起こすことが実際に示されている。
本研究では,機械学習に基づくAD分類にも偏りがあることを実証する。
まずPET画像のみに基づくバイナリ分類アルゴリズムを提案する。
動作補正画像の認知正規化やAD化の精度が高いことが判明した。
画像が動き補正を欠いた場合には,分類精度が著しく低下し,アルゴリズムの有効性や画像解釈の偏りが抑えられることを示した。
128 $^{11}$C-UCB-J と 173 $^{18}$F-FDG のコホートでこれらの知見を検証した。
分類精度は20$^{18}$F-FDGと20$^{11}$C-UCB-Jでそれぞれ10%,5%低下した。
本研究は,PETに基づく機械学習の診断能力を最大限活用するために,効率的な動き補正法の必要性を浮き彫りにするものである。
関連論文リスト
- Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Automated Prostate Cancer Diagnosis Based on Gleason Grading Using
Convolutional Neural Network [12.161266795282915]
そこで本研究では,前立腺癌(PCa)の完全分類のための畳み込みニューラルネットワーク(CNN)を用いた自動分類法を提案する。
Patch-Based Image Reconstruction (PBIR) と呼ばれるデータ拡張手法が提案され,WSIの高分解能化と多様性の向上が図られた。
対象データセットへの事前学習モデルの適応性を高めるために,分布補正モジュールを開発した。
論文 参考訳(メタデータ) (2020-11-29T06:42:08Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
画像分類におけるディープラーニングアルゴリズム, DenseNet169 フレームワーク, Rectified Adam 最適化アルゴリズムを併用したNoval法を提案する。
我々のモデルは、Vgg19、Resnet34、Resnet50のような他の古典的畳み込みニューラルネットワークアプローチよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-11-13T16:04:39Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Detecting Autism Spectrum Disorder using Machine Learning [3.2861753207533937]
逐次最小最適化(SMO)ベースのサポートベクトルマシン(SVM)分類器は、他のすべてのベンチマーク機械学習アルゴリズムより優れている。
Relief Attributesアルゴリズムは、ASDデータセットで最も重要な属性を特定するのに最適である。
論文 参考訳(メタデータ) (2020-09-30T08:33:12Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。