Predicting Performance of Object Detection Models in Electron Microscopy Using Random Forests
- URL: http://arxiv.org/abs/2501.08465v1
- Date: Tue, 14 Jan 2025 22:23:11 GMT
- Title: Predicting Performance of Object Detection Models in Electron Microscopy Using Random Forests
- Authors: Ni Li, Ryan Jacobs, Matthew Lynch, Vidit Agrawal, Kevin Field, Dane Morgan,
- Abstract summary: This study introduces an approach to estimate the performance of deep learning-based object detection models for quantifying defects in transmission electron microscopy (TEM) images.
We developed a random forest regression model that predicts the object detection F1 score, a metric used to evaluate the ability to accurately locate and classify objects of interest.
- Score: 0.7453974564751137
- License:
- Abstract: Quantifying prediction uncertainty when applying object detection models to new, unlabeled datasets is critical in applied machine learning. This study introduces an approach to estimate the performance of deep learning-based object detection models for quantifying defects in transmission electron microscopy (TEM) images, focusing on detecting irradiation-induced cavities in TEM images of metal alloys. We developed a random forest regression model that predicts the object detection F1 score, a statistical metric used to evaluate the ability to accurately locate and classify objects of interest. The random forest model uses features extracted from the predictions of the object detection model whose uncertainty is being quantified, enabling fast prediction on new, unlabeled images. The mean absolute error (MAE) for predicting F1 of the trained model on test data is 0.09, and the $R^2$ score is 0.77, indicating there is a significant correlation between the random forest regression model predicted and true defect detection F1 scores. The approach is shown to be robust across three distinct TEM image datasets with varying imaging and material domains. Our approach enables users to estimate the reliability of a defect detection and segmentation model predictions and assess the applicability of the model to their specific datasets, providing valuable information about possible domain shifts and whether the model needs to be fine-tuned or trained on additional data to be maximally effective for the desired use case.
Related papers
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
We create a physics-based synthetic image and data generator, resulting in a machine learning model that achieves comparable precision (0.86), recall (0.63), F1 scores (0.71), and engineering property predictions (R2=0.82)
Our study demonstrates that synthetic data can eliminate human reliance in ML and provides a means for domain awareness in cases where many feature detections per image are needed.
arXiv Detail & Related papers (2024-08-02T20:15:15Z) - PASA: Attack Agnostic Unsupervised Adversarial Detection using Prediction & Attribution Sensitivity Analysis [2.5347892611213614]
Deep neural networks for classification are vulnerable to adversarial attacks, where small perturbations to input samples lead to incorrect predictions.
We develop a practical method for this characteristic of model prediction and feature attribution to detect adversarial samples.
Our approach demonstrates competitive performance even when an adversary is aware of the defense mechanism.
arXiv Detail & Related papers (2024-04-12T21:22:21Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - MEMO: Test Time Robustness via Adaptation and Augmentation [131.28104376280197]
We study the problem of test time robustification, i.e., using the test input to improve model robustness.
Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions.
We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable.
arXiv Detail & Related papers (2021-10-18T17:55:11Z) - Performance, Successes and Limitations of Deep Learning Semantic
Segmentation of Multiple Defects in Transmission Electron Micrographs [9.237363938772479]
We perform semantic segmentation of defect types in electron microscopy images of irradiated FeCrAl alloys using a deep learning Mask Regional Convolutional Neural Network (Mask R-CNN) model.
We conduct an in-depth analysis of key model performance statistics, with a focus on quantities such as predicted distributions of defect shapes, defect sizes, and defect areal densities.
Overall, we find that the current model is a fast, effective tool for automatically characterizing and quantifying multiple defect types in microscopy images.
arXiv Detail & Related papers (2021-10-15T17:57:59Z) - Monte Carlo DropBlock for Modelling Uncertainty in Object Detection [4.406418914680961]
In this work, we propose an efficient and effective approach to model uncertainty in object detection and segmentation tasks.
The proposed approach applies drop-block during training time and test time on the convolutional layer of the deep learning models such as YOLO.
arXiv Detail & Related papers (2021-08-08T11:34:37Z) - Prediction Surface Uncertainty Quantification in Object Detection Models
for Autonomous Driving [5.784950275336468]
Object detection in autonomous cars is commonly based on camera images and Lidar inputs, which are often used to train prediction models.
We propose a novel method called PURE (Prediction sURface uncErtainty) for measuring prediction uncertainty of such regression models.
arXiv Detail & Related papers (2021-07-11T08:31:15Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Probing Model Signal-Awareness via Prediction-Preserving Input
Minimization [67.62847721118142]
We evaluate models' ability to capture the correct vulnerability signals to produce their predictions.
We measure the signal awareness of models using a new metric we propose- Signal-aware Recall (SAR)
The results show a sharp drop in the model's Recall from the high 90s to sub-60s with the new metric.
arXiv Detail & Related papers (2020-11-25T20:05:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.