Detecting Contextual Anomalies by Discovering Consistent Spatial Regions
- URL: http://arxiv.org/abs/2501.08470v1
- Date: Tue, 14 Jan 2025 22:33:07 GMT
- Title: Detecting Contextual Anomalies by Discovering Consistent Spatial Regions
- Authors: Zhengye Yang, Richard J. Radke,
- Abstract summary: We describe a method for modeling spatial context to enable video anomaly detection.
The main idea is to discover regions that share similar object-level activities by clustering joint object attributes.
We demonstrate this approach, using orders of magnitude fewer parameters than competing models, in the challenging spatial-context-dependent Street Scene dataset.
- Score: 5.160649627495959
- License:
- Abstract: We describe a method for modeling spatial context to enable video anomaly detection. The main idea is to discover regions that share similar object-level activities by clustering joint object attributes using Gaussian mixture models. We demonstrate that this straightforward approach, using orders of magnitude fewer parameters than competing models, achieves state-of-the-art performance in the challenging spatial-context-dependent Street Scene dataset. As a side benefit, the high-resolution discovered regions learned by the model also provide explainable normalcy maps for human operators without the need for any pre-trained segmentation model.
Related papers
- Unsupervised Region-Based Image Editing of Denoising Diffusion Models [50.005612464340246]
We propose a method to identify semantic attributes in the latent space of pre-trained diffusion models without any further training.
Our approach facilitates precise semantic discovery and control over local masked areas, eliminating the need for annotations.
arXiv Detail & Related papers (2024-12-17T13:46:12Z) - Sparse Modelling for Feature Learning in High Dimensional Data [0.0]
This paper presents an innovative approach to dimensionality reduction and feature extraction in high-dimensional datasets.
The proposed framework integrates sparse modeling techniques into a comprehensive pipeline for efficient and interpretable feature selection.
We aim to advance the understanding and application of sparse modeling in machine learning, particularly in the context of wood surface defect detection.
arXiv Detail & Related papers (2024-09-28T14:17:59Z) - Reconstructing Spatiotemporal Data with C-VAEs [49.1574468325115]
Conditional continuous representation of moving regions is commonly used.
In this work, we explore the capabilities of Conditional Varitemporal Autoencoder (C-VAE) models to generate realistic representations of regions' evolution.
arXiv Detail & Related papers (2023-07-12T15:34:10Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Spatio-Temporal Relation Learning for Video Anomaly Detection [35.59510027883497]
Anomaly identification is highly dependent on the relationship between the object and the scene.
In this paper, we propose a Spatial-Temporal Relation Learning framework to tackle the video anomaly detection task.
Experiments are conducted on three public datasets, and the superior performance over the state-of-the-art methods demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2022-09-27T02:19:31Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Contrastive Neighborhood Alignment [81.65103777329874]
We present Contrastive Neighborhood Alignment (CNA), a manifold learning approach to maintain the topology of learned features.
The target model aims to mimic the local structure of the source representation space using a contrastive loss.
CNA is illustrated in three scenarios: manifold learning, where the model maintains the local topology of the original data in a dimension-reduced space; model distillation, where a small student model is trained to mimic a larger teacher; and legacy model update, where an older model is replaced by a more powerful one.
arXiv Detail & Related papers (2022-01-06T04:58:31Z) - Intrinsic Relationship Reasoning for Small Object Detection [44.68289739449486]
Small objects in images and videos are usually not independent individuals. Instead, they more or less present some semantic and spatial layout relationships with each other.
We propose a novel context reasoning approach for small object detection which models and infers the intrinsic semantic and spatial layout relationships between objects.
arXiv Detail & Related papers (2020-09-02T06:03:05Z) - Community detection in sparse latent space models [2.631955426232593]
We show that a simple community detection algorithm originated from blockmodel literature achieves consistency, and even optimality, for a broad and flexible class of sparse latent space models.
arXiv Detail & Related papers (2020-08-04T07:12:15Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.