Community detection in sparse latent space models
- URL: http://arxiv.org/abs/2008.01375v1
- Date: Tue, 4 Aug 2020 07:12:15 GMT
- Title: Community detection in sparse latent space models
- Authors: Fengnan Gao, Zongming Ma, Hongsong Yuan
- Abstract summary: We show that a simple community detection algorithm originated from blockmodel literature achieves consistency, and even optimality, for a broad and flexible class of sparse latent space models.
- Score: 2.631955426232593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that a simple community detection algorithm originated from
stochastic blockmodel literature achieves consistency, and even optimality, for
a broad and flexible class of sparse latent space models. The class of models
includes latent eigenmodels (arXiv:0711.1146). The community detection
algorithm is based on spectral clustering followed by local refinement via
normalized edge counting.
Related papers
- Detecting Contextual Anomalies by Discovering Consistent Spatial Regions [5.160649627495959]
We describe a method for modeling spatial context to enable video anomaly detection.
The main idea is to discover regions that share similar object-level activities by clustering joint object attributes.
We demonstrate this approach, using orders of magnitude fewer parameters than competing models, in the challenging spatial-context-dependent Street Scene dataset.
arXiv Detail & Related papers (2025-01-14T22:33:07Z) - GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Time Series Clustering with an EM algorithm for Mixtures of Linear
Gaussian State Space Models [0.0]
We propose a novel model-based time series clustering method with mixtures of linear Gaussian state space models.
The proposed method uses a new expectation-maximization algorithm for the mixture model to estimate the model parameters.
Experiments on a simulated dataset demonstrate the effectiveness of the method in clustering, parameter estimation, and model selection.
arXiv Detail & Related papers (2022-08-25T07:41:23Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
This work demonstrates a simple approach to reduce the computational and memory complexity of a large class of structured models.
Experiments with neural parameterized structured models for language modeling, polyphonic music modeling, unsupervised grammar induction, and video modeling show that our approach matches the accuracy of standard models at large state spaces.
arXiv Detail & Related papers (2022-01-08T00:47:50Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
Correlation Clustering is an important clustering problem with many applications.
We study the reconstruction version of this problem in which one is seeking to reconstruct a latent clustering corrupted by random noise and adversarial modifications.
arXiv Detail & Related papers (2021-08-10T14:46:17Z) - Vine copula mixture models and clustering for non-Gaussian data [0.0]
We propose a novel vine copula mixture model for continuous data.
We show that the model-based clustering algorithm with vine copula mixture models outperforms the other model-based clustering techniques.
arXiv Detail & Related papers (2021-02-05T16:04:26Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z) - Evaluating the Disentanglement of Deep Generative Models through
Manifold Topology [66.06153115971732]
We present a method for quantifying disentanglement that only uses the generative model.
We empirically evaluate several state-of-the-art models across multiple datasets.
arXiv Detail & Related papers (2020-06-05T20:54:11Z) - Strong Consistency, Graph Laplacians, and the Stochastic Block Model [1.2891210250935143]
We study the performance of classical two-step spectral clustering via the graph Laplacian to learn the block model.
We prove that spectral clustering is able to achieve exact recovery of the planted community structure under conditions that match the information-theoretic limits.
arXiv Detail & Related papers (2020-04-21T07:16:46Z) - Robust spectral clustering using LASSO regularization [0.0]
This paper presents a variant of spectral clustering, called 1-spectral clustering, performed on a new random model closely related to block model.
Its goal is to promote a sparse eigenbasis solution of a 1 minimization problem revealing the natural structure of the graph.
arXiv Detail & Related papers (2020-04-08T07:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.