論文の概要: Automotive Elevation Mapping with Interferometric Synthetic Aperture Radar
- arxiv url: http://arxiv.org/abs/2501.08495v1
- Date: Tue, 14 Jan 2025 23:57:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:51:26.279917
- Title: Automotive Elevation Mapping with Interferometric Synthetic Aperture Radar
- Title(参考訳): インターフェロメトリ合成開口レーダを用いた自動車の標高マッピング
- Authors: Leyla A. Kabuli, Griffin Foster,
- Abstract要約: 合成開口レーダ(synthetic Aperture Radar, SAR)は、レーダーの方位分解能と感度を改善するための一連の技術である。
干渉SARは、SAR画像の位相測定のバリエーションから標高を抽出することができる。
車両に搭載された典型的な低分解能レーダアレイは,都市環境と農業環境の両方において,3次元空間における検出の正確な位置決めに利用できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Radar is a low-cost and ubiquitous automotive sensor, but is limited by array resolution and sensitivity when performing direction of arrival analysis. Synthetic Aperture Radar (SAR) is a class of techniques to improve azimuth resolution and sensitivity for radar. Interferometric SAR (InSAR) can be used to extract elevation from the variations in phase measurements in SAR images. Utilizing InSAR we show that a typical, low-resolution radar array mounted on a vehicle can be used to accurately localize detections in 3D space for both urban and agricultural environments. We generate point clouds in each environment by combining InSAR with a signal processing scheme tailored to automotive driving. This low-compute approach allows radar to be used as a primary sensor to map fine details in complex driving environments, and be used to make autonomous perception decisions.
- Abstract(参考訳): Radarは低コストでユビキタスな自動車用センサーであるが、到着方向分析を行う際にはアレイ分解能と感度に制限される。
合成開口レーダ(synthetic Aperture Radar, SAR)は、レーダーの方位分解能と感度を改善するための一連の技術である。
干渉SAR(Interferometric SAR)は、SAR画像の位相測定のバリエーションから標高を抽出するために用いられる。
InSARを利用すると、車両に搭載された典型的な低分解能レーダーアレイが、都市と農業の両方の環境において3次元空間における検出を正確に局所化することができる。
InSARと自動車運転に適した信号処理方式を組み合わせることで,各環境の点雲を生成する。
この低計算のアプローチにより、レーダーは複雑な運転環境の細部をマッピングし、自律的な認識決定に使うことができる。
関連論文リスト
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
暗い照明や悪天候はカメラの性能を低下させる。
レーダーは騒音と位置のあいまいさに悩まされる。
本稿では,BEVの頑健な物体検出モデルであるRobuRCDetを提案する。
論文 参考訳(メタデータ) (2025-02-18T17:17:38Z) - Redefining Automotive Radar Imaging: A Domain-Informed 1D Deep Learning Approach for High-Resolution and Efficient Performance [6.784861785632841]
本研究では,1次元(1次元)信号の超解像スペクトル推定問題として,レーダー画像の超解像を再定義する。
自動車レーダイメージングのための最適化されたディープラーニングネットワークは、優れたスケーラビリティ、パラメータ効率、高速推論速度を示す。
我々のSR-SPECNetは、高解像度のレーダレンジ方位画像を作成するための新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-06-11T16:07:08Z) - RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D占有に基づく知覚パイプラインは、かなり進歩した自律運転を持つ。
現在の方法では、LiDARやカメラの入力を3D占有率予測に頼っている。
本稿では,4次元イメージングレーダセンサを用いた3次元占有予測手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:48:17Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Deep Radar Inverse Sensor Models for Dynamic Occupancy Grid Maps [0.0]
本稿では,レーダー検出から極性測定格子へのマッピングを学習するために,深層学習に基づく逆センサモデル(ISM)を提案する。
私たちのアプローチは、視野の限られたレーダーから極性スキームで1フレームの計測グリッドを学習する最初の方法です。
これにより、ネットワークの再トレーニングや360度センサのカバレッジの必要なしに、1つ以上のレーダーセンサーを柔軟に使用することが可能になります。
論文 参考訳(メタデータ) (2023-05-21T09:09:23Z) - R4Dyn: Exploring Radar for Self-Supervised Monocular Depth Estimation of
Dynamic Scenes [69.6715406227469]
駆動シナリオにおける自己教師付き単眼深度推定は、教師付きアプローチに匹敵する性能を達成した。
本稿では,自己監督型深度推定フレームワーク上に費用効率の高いレーダデータを利用する新しい手法であるR4Dynを提案する。
論文 参考訳(メタデータ) (2021-08-10T17:57:03Z) - Rethinking of Radar's Role: A Camera-Radar Dataset and Systematic
Annotator via Coordinate Alignment [38.24705460170415]
CRUWと呼ばれる新しいデータセットを体系的なアノテーションとパフォーマンス評価システムで提案する。
CRUWは、レーダーの無線周波数(RF)画像から3Dのオブジェクトを純粋に分類し、ローカライズすることを目指しています。
私たちの知る限り、CRUWは体系的なアノテーションと評価システムを備えた最初の公開大規模データセットです。
論文 参考訳(メタデータ) (2021-05-11T17:13:45Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - CARRADA Dataset: Camera and Automotive Radar with Range-Angle-Doppler
Annotations [0.0]
距離角-ドップラーアノテーションを用いた同期カメラとレーダ記録のデータセットであるCARRADAを紹介する。
また、データセットのアノテートに使用された半自動アノテーション手法と、レーダーセマンティックセグメンテーションベースラインを提案する。
論文 参考訳(メタデータ) (2020-05-04T13:14:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。