DNMDR: Dynamic Networks and Multi-view Drug Representations for Safe Medication Recommendation
- URL: http://arxiv.org/abs/2501.08572v1
- Date: Wed, 15 Jan 2025 04:36:55 GMT
- Title: DNMDR: Dynamic Networks and Multi-view Drug Representations for Safe Medication Recommendation
- Authors: Guanlin Liu, Xiaomei Yu, Zihao Liu, Xue Li, Xingxu Fan, Xiangwei Zheng,
- Abstract summary: This paper proposes a novel Medication Recommendation (MR) method with the integration of dynamic networks and multi-view drug representations (DNMDR)
The proposed DNMDR method outperforms the state-of-the-art baseline models with a large margin on various metrics such as PRAUC, Jaccard, DDI rates and so on.
- Score: 9.504676133698895
- License:
- Abstract: Medication Recommendation (MR) is a promising research topic which booms diverse applications in the healthcare and clinical domains. However, existing methods mainly rely on sequential modeling and static graphs for representation learning, which ignore the dynamic correlations in diverse medical events of a patient's temporal visits, leading to insufficient global structural exploration on nodes. Additionally, mitigating drug-drug interactions (DDIs) is another issue determining the utility of the MR systems. To address the challenges mentioned above, this paper proposes a novel MR method with the integration of dynamic networks and multi-view drug representations (DNMDR). Specifically, weighted snapshot sequences for dynamic heterogeneous networks are constructed based on discrete visits in temporal EHRs, and all the dynamic networks are jointly trained to gain both structural correlations in diverse medical events and temporal dependency in historical health conditions, for achieving comprehensive patient representations with both semantic features and structural relationships. Moreover, combining the drug co-occurrences and adverse drug-drug interactions (DDIs) in internal view of drug molecule structure and interactive view of drug pairs, the safe drug representations are available to obtain high-quality medication combination recommendation. Finally, extensive experiments on real world datasets are conducted for performance evaluation, and the experimental results demonstrate that the proposed DNMDR method outperforms the state-of-the-art baseline models with a large margin on various metrics such as PRAUC, Jaccard, DDI rates and so on.
Related papers
- MD-Syn: Synergistic drug combination prediction based on the multidimensional feature fusion method and attention mechanisms [0.0]
Drug combination therapies have shown promising therapeutic efficacy in complex diseases and have demonstrated the potential to reduce drug resistance.
The huge number of possible drug combinations makes it difficult to screen them all in traditional experiments.
In this study, we proposed MD-Syn, a computational framework, which is based on the multidimensional feature fusion method and multi-head attention mechanisms.
arXiv Detail & Related papers (2025-01-14T06:50:56Z) - CMINNs: Compartment Model Informed Neural Networks -- Unlocking Drug Dynamics [1.7614751781649955]
We propose an innovative approach that enhances PK and integrated PK-PD modeling.
Our methodology employs a Physics-Informed Neural Network (PINN) and fractional Physics-Informed Neural Networks (fPINNs)
Results demonstrate that this methodology offers a robust framework that markedly enhances the model's depiction of drug absorption rates and distributed delayed responses.
arXiv Detail & Related papers (2024-09-19T15:01:33Z) - RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction [4.044376666671973]
We propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction.
A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets.
arXiv Detail & Related papers (2024-08-27T17:13:56Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
We propose a cross-modal consistent multi-view medical report generation with a domain transfer network (C2M-DoT)
C2M-DoT substantially outperforms state-of-the-art baselines in all metrics.
arXiv Detail & Related papers (2023-10-09T02:31:36Z) - ADRNet: A Generalized Collaborative Filtering Framework Combining
Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction [49.56476929112382]
Adverse drug reaction (ADR) prediction plays a crucial role in both health care and drug discovery.
We propose ADRNet, a generalized collaborative filtering framework combining clinical and non-clinical data for drug-ADR prediction.
arXiv Detail & Related papers (2023-08-03T11:28:12Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - Multiple Similarity Drug-Target Interaction Prediction with Random Walks
and Matrix Factorization [16.41618129467975]
We take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets.
To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction.
The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers, but also approximates the interactions with their inner product.
arXiv Detail & Related papers (2022-01-24T08:02:05Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - Deep sr-DDL: Deep Structurally Regularized Dynamic Dictionary Learning to Integrate Multimodal and Dynamic Functional Connectomics data for Multidimensional Clinical Characterizations [5.200461964737113]
We propose a novel integrated framework that jointly models complementary information from resting-state functional MRI (rs-fMRI) connectivity and diffusion tensor imaging (DTI) tractography.
Our framework couples a generative model of the connectomics data with a deep network that predicts behavioral scores.
Our hybrid model outperforms several state-of-the-art approaches at clinical outcome prediction and learns interpretable multimodal neural signatures of brain organization.
arXiv Detail & Related papers (2020-08-27T23:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.