論文の概要: Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization
- arxiv url: http://arxiv.org/abs/2305.19903v3
- Date: Sun, 11 Jun 2023 16:19:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 23:34:14.986960
- Title: Improving Expressivity of GNNs with Subgraph-specific Factor Embedded
Normalization
- Title(参考訳): 部分的因子埋め込み正規化によるGNNの表現性向上
- Authors: Kaixuan Chen and Shunyu Liu and Tongtian Zhu and Tongya Zheng and
Haofei Zhang and Zunlei Feng and Jingwen Ye and Mingli Song
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱うための学習アーキテクチャの強力なカテゴリとして登場した。
我々は SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm) と呼ばれる専用プラグアンドプレイ正規化方式を提案する。
- 参考スコア(独自算出の注目度): 30.86182962089487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as a powerful category of learning
architecture for handling graph-structured data. However, existing GNNs
typically ignore crucial structural characteristics in node-induced subgraphs,
which thus limits their expressiveness for various downstream tasks. In this
paper, we strive to strengthen the representative capabilities of GNNs by
devising a dedicated plug-and-play normalization scheme, termed as
SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm), that explicitly
considers the intra-connection information within each node-induced subgraph.
To this end, we embed the subgraph-specific factor at the beginning and the end
of the standard BatchNorm, as well as incorporate graph instance-specific
statistics for improved distinguishable capabilities. In the meantime, we
provide theoretical analysis to support that, with the elaborated SuperNorm, an
arbitrary GNN is at least as powerful as the 1-WL test in distinguishing
non-isomorphism graphs. Furthermore, the proposed SuperNorm scheme is also
demonstrated to alleviate the over-smoothing phenomenon. Experimental results
related to predictions of graph, node, and link properties on the eight popular
datasets demonstrate the effectiveness of the proposed method. The code is
available at https://github.com/chenchkx/SuperNorm.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データを扱うための学習アーキテクチャの強力なカテゴリとして登場した。
しかし、既存のGNNはノードが引き起こす部分グラフにおいて重要な構造的特性を無視するため、様々な下流タスクに対する表現性が制限される。
本稿では,各ノードのサブグラフ内の接続内情報を明示的に考慮した,SUbgraph-sPEcific FactoR Embedded Normalization (SuperNorm) と呼ばれる専用プラグアンドプレイ正規化スキームを考案することによって,GNNの代表的機能を強化することを目的とする。
この目的のために、標準BatchNormの開始と終了にサブグラフ固有の要素を埋め込むとともに、グラフインスタンス固有の統計データを組み込んで区別可能な機能を改善する。
一方、精巧化されたSuperNormでは、任意の GNN は非同型グラフを区別する 1-WL テストと同じくらい強力である。
さらに,提案したSuperNormスキームにより,過平滑化現象の緩和が図られた。
8つの人気データセットにおけるグラフ,ノード,リンク特性の予測に関する実験結果は,提案手法の有効性を示している。
コードはhttps://github.com/chenchkx/SuperNorm.comから入手できる。
関連論文リスト
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
論文 参考訳(メタデータ) (2024-07-03T02:40:39Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - Iterative Graph Neural Network Enhancement via Frequent Subgraph Mining
of Explanations [0.0]
我々は、説明強化グラフ学習(EEGL)と呼ばれるノード分類のためのグラフニューラルネットワーク(GNN)のためのXAIベースのモデル改善アプローチを定式化する。
目的は、説明を用いてGNNの予測性能を改善することである。
EEGLは、学習された"バニラ"GNNから始まる反復的な自己改善アルゴリズムであり、頻繁にサブグラフマイニングを使用して説明サブグラフの関連パターンを見つける。
論文 参考訳(メタデータ) (2024-03-12T17:41:27Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Towards Better Generalization with Flexible Representation of
Multi-Module Graph Neural Networks [0.27195102129094995]
ランダムグラフ生成器を用いて,グラフサイズと構造特性がGNNの予測性能に与える影響について検討する。
本稿では,GNNが未知のグラフに一般化できるかどうかを決定する上で,平均ノード次数が重要な特徴であることを示す。
集約された入力に対して単一の正準非線形変換を一般化することにより、ネットワークが新しいグラフに柔軟に対応可能なマルチモジュールGNNフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-14T12:13:59Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
グラフニューラルネットワーク(GNN)は、両方の証拠源を利用するように設計されている。
本稿では,GPR重みを適応的に学習する汎用PageRank (GPR) GNNアーキテクチャを提案する。
GPR-GNNは、合成データとベンチマークデータの両方の既存の技術と比較して、大幅な性能改善を提供する。
論文 参考訳(メタデータ) (2020-06-14T19:27:39Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。