論文の概要: Molecular Graph Contrastive Learning with Line Graph
- arxiv url: http://arxiv.org/abs/2501.08589v1
- Date: Wed, 15 Jan 2025 05:17:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:05.437996
- Title: Molecular Graph Contrastive Learning with Line Graph
- Title(参考訳): ライングラフを用いた分子グラフコントラスト学習
- Authors: Xueyuan Chen, Shangzhe Li, Ruomei Liu, Bowen Shi, Jiaheng Liu, Junran Wu, Ke Xu,
- Abstract要約: グラフコントラスト学習(GCL)は、分子特性予測や薬物設計に利用できる。
分子意味論を省略せずに符号化するための新しい手法である textitLEMON を提案する。
ビュー生成のための最新技術(SOTA)手法と比較して,分子特性予測における優れた性能は,提案手法の有効性を示唆している。
- 参考スコア(独自算出の注目度): 25.71472037657342
- License:
- Abstract: Trapped by the label scarcity in molecular property prediction and drug design, graph contrastive learning (GCL) came forward. Leading contrastive learning works show two kinds of view generators, that is, random or learnable data corruption and domain knowledge incorporation. While effective, the two ways also lead to molecular semantics altering and limited generalization capability, respectively. To this end, we relate the \textbf{L}in\textbf{E} graph with \textbf{MO}lecular graph co\textbf{N}trastive learning and propose a novel method termed \textit{LEMON}. Specifically, by contrasting the given graph with the corresponding line graph, the graph encoder can freely encode the molecular semantics without omission. Furthermore, we present a new patch with edge attribute fusion and two local contrastive losses enhance information transmission and tackle hard negative samples. Compared with state-of-the-art (SOTA) methods for view generation, superior performance on molecular property prediction suggests the effectiveness of our proposed framework.
- Abstract(参考訳): 分子特性予測と薬物設計におけるラベル不足により,グラフコントラスト学習(GCL)が進展した。
対照的な学習は、ランダムまたは学習可能なデータ破損とドメイン知識の組み込まれた2種類のビュージェネレータを示す。
この2つの方法は、それぞれに分子的意味論の変化と限定的な一般化能力をもたらす。
この目的のために、 \textbf{L}in\textbf{E} graph と \textbf{MO}lecular graph co\textbf{N}trastive learning を関連付け、新しい方法である \textit{LEMON} を提案する。
具体的には、与えられたグラフと対応する線グラフを対比することにより、グラフエンコーダは省略することなく自由に分子意味論を符号化することができる。
さらに、エッジ属性融合と2つの局所的コントラスト損失が情報伝達を増強し、ハードネガティブなサンプルに取り組む新しいパッチを提案する。
ビュー生成のための最新技術(SOTA)手法と比較して,分子特性予測における優れた性能は,提案手法の有効性を示唆している。
関連論文リスト
- Extracting Molecular Properties from Natural Language with Multimodal
Contrastive Learning [1.3717673827807508]
本研究では,分子特性情報を自然言語からグラフ表現へ伝達する方法について検討する。
我々は, テキスト検索を改善するために, ニューラル関連評価戦略を実装し, 化学的に有意な分子グラフ増強戦略を導入する。
グラフモダリティだけで事前学習されたモデルに対するAUROCの利得は+4.26%、最近提案された分子グラフ/テキストの対照的に訓練されたMoMuモデルに比べて+1.54%向上する。
論文 参考訳(メタデータ) (2023-07-22T10:32:58Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTAは、薬物表現を学習する分子グラフのためのグラフコントラスト学習フレームワークである。
次に、薬物と標的表現の均一性を調整するために直接使用できる新しい損失関数を設計する。
上記のイノベーティブな要素の有効性は、2つの実際のデータセットで検証される。
論文 参考訳(メタデータ) (2023-07-18T06:01:37Z) - GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule
Zero-Shot Learning [71.89623260998934]
本研究は,ゼロショット環境下での分子関連タスクの実現に自然言語命令を用いることの実現可能性について検討する。
既存の分子テキストモデルは、命令の不十分な処理とグラフの限られた容量のために、この設定では性能が良くない。
グラフデータとテキストデータの両方の言語モデルを統合するGIMLETを提案する。
論文 参考訳(メタデータ) (2023-05-28T18:27:59Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Attention-wise masked graph contrastive learning for predicting
molecular property [15.387677968070912]
大規模無ラベル分子のための自己教師付き表現学習フレームワークを提案する。
我々は,注目グラフマスクと呼ばれる新しい分子グラフ拡張戦略を開発した。
我々のモデルは重要な分子構造と高次意味情報を捉えることができる。
論文 参考訳(メタデータ) (2022-05-02T00:28:02Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
不均一グラフニューラルネットワーク(HGNN)は異種グラフのモデリングと解析において非常に一般的な手法である。
我々は,ノード属性とグラフトポロジの各ガイダンスに関する2つの視点を取り入れた,新規で頑健なヘテロジニアスグラフコントラスト学習手法であるHGCLを初めて開発する。
この新しいアプローチでは,属性とトポロジに関連情報を別々にマイニングする手法として,異なるが最も適した属性とトポロジの融合機構を2つの視点に適用する。
論文 参考訳(メタデータ) (2022-04-30T12:57:02Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
エンドツーエンドで説明グラフを生成する事前学習言語モデルについて検討する。
本稿では,ノードとエッジの編集操作によるグラフ摂動の簡易かつ効果的な方法を提案する。
提案手法は,説明グラフの構造的精度と意味的精度を両立させる。
論文 参考訳(メタデータ) (2022-04-11T00:58:27Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
本研究では,新しいグラフコントラスト学習手法,すなわち textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learningを提案する。
両空間にはグラフデータを埋め込み空間に表現する独自の利点があるので、グラフコントラスト学習を用いて空間をブリッジし、双方の利点を活用することを期待する。
論文 参考訳(メタデータ) (2022-01-19T04:10:29Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
分子グラフ表現を改善するために,コミュニケーティブメッセージパッシングトランス (CoMPT) ニューラルネットワークを提案する。
分子を完全連結グラフとして扱う従来のトランスフォーマースタイルのGNNとは異なり、グラフ接続帰納バイアスを利用するメッセージ拡散機構を導入する。
論文 参考訳(メタデータ) (2021-07-19T11:58:32Z) - Hierarchical Inter-Message Passing for Learning on Molecular Graphs [9.478108870211365]
分子グラフを学習するための階層型ニューラルメッセージパッシングアーキテクチャを提案する。
我々の手法は、サイクルの検出など、古典的なGNNで知られているいくつかの制限を克服することができるが、それでも訓練は非常に効率的である。
論文 参考訳(メタデータ) (2020-06-22T12:25:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。