Molecular Graph Contrastive Learning with Line Graph
- URL: http://arxiv.org/abs/2501.08589v1
- Date: Wed, 15 Jan 2025 05:17:38 GMT
- Title: Molecular Graph Contrastive Learning with Line Graph
- Authors: Xueyuan Chen, Shangzhe Li, Ruomei Liu, Bowen Shi, Jiaheng Liu, Junran Wu, Ke Xu,
- Abstract summary: Graph contrastive learning (GCL) can be used for molecular property prediction and drug design.
We propose a novel method termed textitLEMON for encoding molecular semantics without omission.
Compared with state-of-the-art (SOTA) methods for view generation, superior performance on molecular property prediction suggests the effectiveness of our proposed framework.
- Score: 25.71472037657342
- License:
- Abstract: Trapped by the label scarcity in molecular property prediction and drug design, graph contrastive learning (GCL) came forward. Leading contrastive learning works show two kinds of view generators, that is, random or learnable data corruption and domain knowledge incorporation. While effective, the two ways also lead to molecular semantics altering and limited generalization capability, respectively. To this end, we relate the \textbf{L}in\textbf{E} graph with \textbf{MO}lecular graph co\textbf{N}trastive learning and propose a novel method termed \textit{LEMON}. Specifically, by contrasting the given graph with the corresponding line graph, the graph encoder can freely encode the molecular semantics without omission. Furthermore, we present a new patch with edge attribute fusion and two local contrastive losses enhance information transmission and tackle hard negative samples. Compared with state-of-the-art (SOTA) methods for view generation, superior performance on molecular property prediction suggests the effectiveness of our proposed framework.
Related papers
- Extracting Molecular Properties from Natural Language with Multimodal
Contrastive Learning [1.3717673827807508]
We study how molecular property information can be transferred from natural language to graph representations.
We implement neural relevance scoring strategies to improve text retrieval, introduce a novel chemically-valid molecular graph augmentation strategy.
We achieve a +4.26% AUROC gain versus models pre-trained on the graph modality alone, and a +1.54% gain compared to recently proposed molecular graph/text contrastively trained MoMu model.
arXiv Detail & Related papers (2023-07-22T10:32:58Z) - GraphCL-DTA: a graph contrastive learning with molecular semantics for
drug-target binding affinity prediction [2.523552067304274]
GraphCL-DTA is a graph contrastive learning framework for molecular graphs to learn drug representations.
Next, we design a new loss function that can be directly used to adjust the uniformity of drug and target representations.
The effectiveness of the above innovative elements is verified on two real datasets.
arXiv Detail & Related papers (2023-07-18T06:01:37Z) - GIMLET: A Unified Graph-Text Model for Instruction-Based Molecule
Zero-Shot Learning [71.89623260998934]
This study investigates the feasibility of employing natural language instructions to accomplish molecule-related tasks in a zero-shot setting.
Existing molecule-text models perform poorly in this setting due to inadequate treatment of instructions and limited capacity for graphs.
We propose GIMLET, which unifies language models for both graph and text data.
arXiv Detail & Related papers (2023-05-28T18:27:59Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Attention-wise masked graph contrastive learning for predicting
molecular property [15.387677968070912]
We proposed a self-supervised representation learning framework for large-scale unlabeled molecules.
We developed a novel molecular graph augmentation strategy, referred to as attention-wise graph mask.
Our model can capture important molecular structure and higher-order semantic information.
arXiv Detail & Related papers (2022-05-02T00:28:02Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Explanation Graph Generation via Pre-trained Language Models: An
Empirical Study with Contrastive Learning [84.35102534158621]
We study pre-trained language models that generate explanation graphs in an end-to-end manner.
We propose simple yet effective ways of graph perturbations via node and edge edit operations.
Our methods lead to significant improvements in both structural and semantic accuracy of explanation graphs.
arXiv Detail & Related papers (2022-04-11T00:58:27Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
We propose a novel graph contrastive learning method, namely textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learning.
Since both spaces have their own advantages to represent graph data in the embedding spaces, we hope to utilize graph contrastive learning to bridge the spaces and leverage advantages from both sides.
arXiv Detail & Related papers (2022-01-19T04:10:29Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Learning Attributed Graph Representations with Communicative Message
Passing Transformer [3.812358821429274]
We propose a Communicative Message Passing Transformer (CoMPT) neural network to improve the molecular graph representation.
Unlike the previous transformer-style GNNs that treat molecules as fully connected graphs, we introduce a message diffusion mechanism to leverage the graph connectivity inductive bias.
arXiv Detail & Related papers (2021-07-19T11:58:32Z) - Hierarchical Inter-Message Passing for Learning on Molecular Graphs [9.478108870211365]
We present a hierarchical neural message passing architecture for learning on molecular graphs.
Our method is able to overcome some of the restrictions known from classical GNNs, like detecting cycles, while still being very efficient to train.
arXiv Detail & Related papers (2020-06-22T12:25:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.