Transformer-based Multivariate Time Series Anomaly Localization
- URL: http://arxiv.org/abs/2501.08628v1
- Date: Wed, 15 Jan 2025 07:18:51 GMT
- Title: Transformer-based Multivariate Time Series Anomaly Localization
- Authors: Charalampos Shimillas, Kleanthis Malialis, Konstantinos Fokianos, Marios M. Polycarpou,
- Abstract summary: Space-Time Anomaly Score (STAS) is a new metric inspired by the connection between transformer latent representations and space-time statistical models.
Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms.
Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
- Score: 5.554794295879246
- License:
- Abstract: With the growing complexity of Cyber-Physical Systems (CPS) and the integration of Internet of Things (IoT), the use of sensors for online monitoring generates large volume of multivariate time series (MTS) data. Consequently, the need for robust anomaly diagnosis in MTS is paramount to maintaining system reliability and safety. While significant advancements have been made in anomaly detection, localization remains a largely underexplored area, though crucial for intelligent decision-making. This paper introduces a novel transformer-based model for unsupervised anomaly diagnosis in MTS, with a focus on improving localization performance, through an in-depth analysis of the self-attention mechanism's learning behavior under both normal and anomalous conditions. We formulate the anomaly localization problem as a three-stage process: time-step, window, and segment-based. This leads to the development of the Space-Time Anomaly Score (STAS), a new metric inspired by the connection between transformer latent representations and space-time statistical models. STAS is designed to capture individual anomaly behaviors and inter-series dependencies, delivering enhanced localization performance. Additionally, the Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms. Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
Related papers
- Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Temporal Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis [1.170167705525779]
This paper proposes a novel visual analytics framework that integrates two generative AI models, Temporal Fusion Transformer (TFT) and Variational Autoencoders (VAEs)
It reduces complex patterns into lower-dimensional latent spaces and visualizes them in 2D using dimensionality reduction techniques such as PCA, t-SNE, and UMAP with DBSCAN.
The framework is demonstrated through a case study on power grid signal data, where it identifies multi-label grid event signatures, including faults and anomalies with diverse root causes.
arXiv Detail & Related papers (2024-12-20T17:41:11Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies [4.806959791183183]
We propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in industrial MTS.
By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and timestamp-temporal association.
Experiments conducted on six diverse MTS retrieved from real cyber-physical systems and server machines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8% in terms of F1 score.
arXiv Detail & Related papers (2024-04-12T03:39:33Z) - Unsupervised Spatio-Temporal State Estimation for Fine-grained Adaptive
Anomaly Diagnosis of Industrial Cyber-physical Systems [5.1571273635572235]
This paper proposes a fine-grained adaptive anomaly diagnosis method (i.e. MAD-Transformer) to identify and diagnose anomalies in MTS.
The results demonstrate that MAD-Transformer can adaptively detect fine-grained anomalies with short duration, and outperforms the state-of-the-art baselines in terms of noise robustness and localization performance.
arXiv Detail & Related papers (2024-03-05T03:11:02Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
We propose a novel correlated attention mechanism, which efficiently captures feature-wise dependencies, and can be seamlessly integrated within the encoder blocks of existing Transformers.
In particular, correlated attention operates across feature channels to compute cross-covariance matrices between queries and keys with different lag values, and selectively aggregate representations at the sub-series level.
This architecture facilitates automated discovery and representation learning of not only instantaneous but also lagged cross-correlations, while inherently capturing time series auto-correlation.
arXiv Detail & Related papers (2023-11-20T17:35:44Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Diagnostic Spatio-temporal Transformer with Faithful Encoding [54.02712048973161]
This paper addresses the task of anomaly diagnosis when the underlying data generation process has a complex-temporal (ST) dependency.
We formalize the problem as supervised dependency discovery, where the ST dependency is learned as a side product of time-series classification.
We show that temporal positional encoding used in existing ST transformer works has a serious limitation capturing frequencies in higher frequencies (short time scales)
We also propose a new ST dependency discovery framework, which can provide readily consumable diagnostic information in both spatial and temporal directions.
arXiv Detail & Related papers (2023-05-26T05:31:23Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.