Continuous Wavelet Transform and Siamese Network-Based Anomaly Detection in Multi-variate Semiconductor Process Time Series
- URL: http://arxiv.org/abs/2507.01999v1
- Date: Tue, 01 Jul 2025 11:10:19 GMT
- Title: Continuous Wavelet Transform and Siamese Network-Based Anomaly Detection in Multi-variate Semiconductor Process Time Series
- Authors: Bappaditya Dey, Daniel Sorensen, Minjin Hwang, Sandip Halder,
- Abstract summary: anomaly prediction in semiconductor fabrication presents several critical challenges.<n>The paper presents a novel and generic approach for anomaly detection in MTS data using machine learning.<n>Our approach demonstrates high accuracy in identifying anomalies on a real FAB process time-series dataset.
- Score: 0.11184789007828977
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semiconductor manufacturing is an extremely complex process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series (MTS) analysis has emerged as a critical methodology for enabling real-time monitoring, fault detection, and predictive maintenance in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high data dimensionality, severe class imbalance due to the rarity of true faults, noisy and missing measurements, and non-stationary behavior of production systems. Furthermore, the complex interdependencies between variables and the delayed emergence of faults across downstream stages complicate both anomaly detection and root-cause-analysis. This paper presents a novel and generic approach for anomaly detection in MTS data using machine learning. The proposed methodology consists of three main steps: a) converting MTS data into image-based representations using the Continuous Wavelet Transform, b) developing a multi-class image classifier by fine-tuning a pretrained VGG-16 architecture on custom CWT image datasets, and c) constructing a Siamese network composed of two identical sub-networks, each utilizing the fine-tuned VGG-16 as a backbone. The network takes pairs of CWT images as input -one serving as a reference or anchor (representing a known-good signal), and the other as a query (representing an unknown signal). The model then compares the embeddings of both inputs to determine whether they belong to the same class at a given time step. Our approach demonstrates high accuracy in identifying anomalies on a real FAB process time-series dataset, offering a promising solution for offline anomaly detection in process and tool trace data. Moreover, the approach is flexible and can be applied in both supervised and semi-supervised settings.
Related papers
- Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation [61.64052577026623]
Real-world multi-view datasets are often heterogeneous and imperfect.<n>We propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment.<n>In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval.
arXiv Detail & Related papers (2025-03-06T07:01:08Z) - Transformer-based Multivariate Time Series Anomaly Localization [5.554794295879246]
Space-Time Anomaly Score (STAS) is a new metric inspired by the connection between transformer latent representations and space-time statistical models.<n> Statistical Feature Anomaly Score (SFAS) complements STAS by analyzing statistical features around anomalies, with their combination helping to reduce false alarms.<n>Experiments on real world and synthetic datasets illustrate the model's superiority over state-of-the-art methods in both detection and localization tasks.
arXiv Detail & Related papers (2025-01-15T07:18:51Z) - Explainable AI for Multivariate Time Series Pattern Exploration: Latent Space Visual Analytics with Temporal Fusion Transformer and Variational Autoencoders in Power Grid Event Diagnosis [1.170167705525779]
This paper proposes a novel visual analytics framework that integrates two generative AI models, Temporal Fusion Transformer (TFT) and Variational Autoencoders (VAEs)<n>It reduces complex patterns into lower-dimensional latent spaces and visualizes them in 2D using dimensionality reduction techniques such as PCA, t-SNE, and UMAP with DBSCAN.<n>The framework is demonstrated through a case study on power grid signal data, where it identifies multi-label grid event signatures, including faults and anomalies with diverse root causes.
arXiv Detail & Related papers (2024-12-20T17:41:11Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
We present STEMD, a novel end-to-end framework that enhances the DETR-like paradigm for multi-frame 3D object detection.
First, to model the inter-object spatial interaction and complex temporal dependencies, we introduce the spatial-temporal graph attention network.
Finally, it poses a challenge for the network to distinguish between the positive query and other highly similar queries that are not the best match.
arXiv Detail & Related papers (2023-07-01T13:53:14Z) - Contrastive predictive coding for Anomaly Detection in Multi-variate
Time Series Data [6.463941665276371]
We propose a Time-series Representational Learning through Contrastive Predictive Coding (TRL-CPC) towards anomaly detection in MVTS data.
First, we jointly optimize an encoder, an auto-regressor and a non-linear transformation function to effectively learn the representations of the MVTS data sets.
arXiv Detail & Related papers (2022-02-08T04:25:29Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
We propose an unsupervised Attention-based Convolutional Long Short-Term Memory (ConvLSTM) Autoencoder with Dynamic Thresholding (ACLAE-DT) framework for anomaly detection and diagnosis.
The framework starts by pre-processing and enriching the data, before constructing feature images to characterize the system statuses.
The constructed feature images are fed into an attention-based ConvLSTM autoencoder, which aims to encode the constructed feature images and capture the temporal behavior.
The reconstruction errors are then computed and subjected to a statistical-based, dynamic thresholding mechanism to detect and diagnose the anomalies
arXiv Detail & Related papers (2022-01-23T04:01:43Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
A number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors.
This paper proposes the use of a relatively new time series representation named Shapelet Transform to autonomously identify anomalies in SHM data.
arXiv Detail & Related papers (2020-08-31T01:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.