Quantum Reservoir Computing and Risk Bounds
- URL: http://arxiv.org/abs/2501.08640v1
- Date: Wed, 15 Jan 2025 08:06:03 GMT
- Title: Quantum Reservoir Computing and Risk Bounds
- Authors: Naomi Mona Chmielewski, Nina Amini, Joseph Mikael,
- Abstract summary: We give specific, parameter-dependent bounds for two particular quantum reservoir classes.
Applying our results to classes with readout functions, we find that the risk bounds converge in the number of training samples.
- Score: 1.2289361708127877
- License:
- Abstract: We propose a way to bound the generalisation errors of several classes of quantum reservoirs using the Rademacher complexity. We give specific, parameter-dependent bounds for two particular quantum reservoir classes. We analyse how the generalisation bounds scale with growing numbers of qubits. Applying our results to classes with polynomial readout functions, we find that the risk bounds converge in the number of training samples. The explicit dependence on the quantum reservoir and readout parameters in our bounds can be used to control the generalisation error to a certain extent. It should be noted that the bounds scale exponentially with the number of qubits $n$. The upper bounds on the Rademacher complexity can be applied to other reservoir classes that fulfill a few hypotheses on the quantum dynamics and the readout function.
Related papers
- Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - Quantum Non-Identical Mean Estimation: Efficient Algorithms and Fundamental Limits [15.89518426969296]
We investigate quantum algorithms and lower bounds for mean estimation given query access to non-identically distributed samples.
On the one hand, we give quantum mean estimators with quadratic quantum speed-up given samples from different bounded or sub-Gaussian random variables.
On the other hand, we prove that, in general, it is impossible for any quantum algorithm to achieve quadratic speed-up over the number of classical samples needed.
arXiv Detail & Related papers (2024-05-21T14:42:39Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - Normal quantum channels and Markovian correlated two-qubit quantum
errors [77.34726150561087]
We study general normally'' distributed random unitary transformations.
On the one hand, a normal distribution induces a unital quantum channel.
On the other hand, the diffusive random walk defines a unital quantum process.
arXiv Detail & Related papers (2023-07-25T15:33:28Z) - Quantum Query Complexity of Boolean Functions under Indefinite Causal
Order [0.9208007322096533]
We study the query complexity of Boolean functions under general higher order quantum computations.
We show that the recently introduced class of quantum circuits with quantum control of causal order cannot lead to any reduction in query complexity.
We find some functions for which the minimum error with which they can be computed using two queries is strictly lower when exploiting causally indefinite supermaps.
arXiv Detail & Related papers (2023-07-18T13:12:55Z) - Hierarchies of Frequentist Bounds for Quantum Metrology: From
Cram\'er-Rao to Barankin [0.0]
We obtain hierarchies of increasingly tight bounds that include the quantum Cram'er-Rao bound at the lowest order.
Results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions.
arXiv Detail & Related papers (2023-03-10T17:55:52Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Practical computational advantage from the quantum switch on a
generalized family of promise problems [0.0]
The quantum switch is a quantum computational primitive that provides computational advantage by applying operations in a superposition of orders.
In this work, we use Complex Hadamard matrices to introduce more general promise problems.
arXiv Detail & Related papers (2022-07-26T15:57:12Z) - A hierarchy of efficient bounds on quantum capacities exploiting
symmetry [8.717253904965371]
We exploit the recently introduced $D#$ in order to obtain a hierarchy of semidefinite programming bounds on various regularized quantities.
As applications, we give a general procedure to give efficient bounds on the regularized Umegaki channel divergence.
We prove that for fixed input and output dimensions, the regularized sandwiched R'enyi divergence between any two quantum channels can be approximated up to an $epsilon$ accuracy in time.
arXiv Detail & Related papers (2022-03-04T04:34:15Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.