Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
- URL: http://arxiv.org/abs/2501.08655v1
- Date: Wed, 15 Jan 2025 08:46:20 GMT
- Title: Application of Deep Reinforcement Learning to UAV Swarming for Ground Surveillance
- Authors: Raúl Arranz, David Carramiñana, Gonzalo de Miguel, Juan A. Besada, Ana M. Bernardos,
- Abstract summary: It proposes a hybrid AI system, integrating deep reinforcement learning in a multi-agent centralized swarm architecture.
The proposed system is tailored to perform surveillance of a specific area, searching and tracking ground targets, for security and law enforcement applications.
- Score: 0.0
- License:
- Abstract: This paper summarizes in depth the state of the art of aerial swarms, covering both classical and new reinforcement-learning-based approaches for their management. Then, it proposes a hybrid AI system, integrating deep reinforcement learning in a multi-agent centralized swarm architecture. The proposed system is tailored to perform surveillance of a specific area, searching and tracking ground targets, for security and law enforcement applications. The swarm is governed by a central swarm controller responsible for distributing different search and tracking tasks among the cooperating UAVs. Each UAV agent is then controlled by a collection of cooperative sub-agents, whose behaviors have been trained using different deep reinforcement learning models, tailored for the different task types proposed by the swarm controller. More specifically, proximal policy optimization (PPO) algorithms were used to train the agents' behavior. In addition, several metrics to assess the performance of the swarm in this application were defined. The results obtained through simulation show that our system searches the operation area effectively, acquires the targets in a reasonable time, and is capable of tracking them continuously and consistently.
Related papers
- Multi-Target Radar Search and Track Using Sequence-Capable Deep Reinforcement Learning [0.26999000177990923]
The research addresses sensor task management for radar systems.
It focuses on efficiently searching and tracking multiple targets using reinforcement learning.
The key contribution lies in demonstrating how reinforcement learning can optimize sensor management.
arXiv Detail & Related papers (2025-02-19T09:55:38Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.
We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - Cooperative Cognitive Dynamic System in UAV Swarms: Reconfigurable Mechanism and Framework [80.39138462246034]
We propose the cooperative cognitive dynamic system (CCDS) to optimize the management for UAV swarms.
CCDS is a hierarchical and cooperative control structure that enables real-time data processing and decision.
In addition, CCDS can be integrated with the biomimetic mechanism to efficiently allocate tasks for UAV swarms.
arXiv Detail & Related papers (2024-05-18T12:45:00Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Distributed multi-agent target search and tracking with Gaussian process
and reinforcement learning [26.499110405106812]
We propose a multi-agent reinforcement learning technique with target map building based on distributed process.
We evaluate the performance and transferability of the trained policy in simulation and demonstrate the method on a swarm of micro unmanned aerial vehicles.
arXiv Detail & Related papers (2023-08-29T01:53:14Z) - Efficient Domain Coverage for Vehicles with Second-Order Dynamics via
Multi-Agent Reinforcement Learning [9.939081691797858]
We present a reinforcement learning (RL) approach for the multi-agent efficient domain coverage problem involving agents with second-order dynamics.
Our proposed network architecture includes the incorporation of LSTM and self-attention, which allows the trained policy to adapt to a variable number of agents.
arXiv Detail & Related papers (2022-11-11T01:59:12Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
This paper investigates a master unmanned aerial vehicle (MUAV)-powered Internet of Things (IoT) network.
We propose using a rechargeable auxiliary UAV (AUAV) equipped with an intelligent reflecting surface (IRS) to enhance the communication signals from the MUAV.
Under the proposed model, we investigate the optimal collaboration strategy of these energy-limited UAVs to maximize the accumulated throughput of the IoT network.
arXiv Detail & Related papers (2021-12-20T15:45:28Z) - Decentralized Reinforcement Learning for Multi-Target Search and
Detection by a Team of Drones [12.055303570215335]
Targets search and detection encompasses a variety of decision problems such as coverage, surveillance, search, observing and pursuit-evasion.
We develop a multi-agent deep reinforcement learning (MADRL) method to coordinate a group of aerial vehicles (drones) for the purpose of locating a set of static targets in an unknown area.
arXiv Detail & Related papers (2021-03-17T09:04:47Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.