論文の概要: Enhanced Large Language Models for Effective Screening of Depression and Anxiety
- arxiv url: http://arxiv.org/abs/2501.08769v1
- Date: Wed, 15 Jan 2025 12:42:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:42.104709
- Title: Enhanced Large Language Models for Effective Screening of Depression and Anxiety
- Title(参考訳): 抑うつと不安の効果的なスクリーニングのための拡張された大規模言語モデル
- Authors: June M. Liu, Mengxia Gao, Sahand Sabour, Zhuang Chen, Minlie Huang, Tatia M. C. Lee,
- Abstract要約: 本稿では,臨床面接を合成するためのパイプラインを導入し,対話型対話を1,157件紹介する(PsyInterview)。
EmoScanは、粗末(不安やうつ病など)と微妙な障害(うつ病など)を区別し、高品質な面接を行う。
- 参考スコア(独自算出の注目度): 44.81045754697482
- License:
- Abstract: Depressive and anxiety disorders are widespread, necessitating timely identification and management. Recent advances in Large Language Models (LLMs) offer potential solutions, yet high costs and ethical concerns about training data remain challenges. This paper introduces a pipeline for synthesizing clinical interviews, resulting in 1,157 interactive dialogues (PsyInterview), and presents EmoScan, an LLM-based emotional disorder screening system. EmoScan distinguishes between coarse (e.g., anxiety or depressive disorders) and fine disorders (e.g., major depressive disorders) and conducts high-quality interviews. Evaluations showed that EmoScan exceeded the performance of base models and other LLMs like GPT-4 in screening emotional disorders (F1-score=0.7467). It also delivers superior explanations (BERTScore=0.9408) and demonstrates robust generalizability (F1-score of 0.67 on an external dataset). Furthermore, EmoScan outperforms baselines in interviewing skills, as validated by automated ratings and human evaluations. This work highlights the importance of scalable data-generative pipelines for developing effective mental health LLM tools.
- Abstract(参考訳): うつ病と不安障害は広く、タイムリーな識別と管理を必要とする。
大規模言語モデル(LLM)の最近の進歩は潜在的な解決策を提供するが、トレーニングデータに対する高いコストと倫理的懸念は依然として課題である。
本稿では,臨床面接を合成するパイプラインを提案し,その結果,対話型対話(PsyInterview)が1,157件,LCMに基づく感情障害スクリーニングシステムであるEmoScanについて紹介する。
EmoScanは、粗末(不安、うつ病など)と微妙な障害(うつ病など)を区別し、高品質な面接を行う。
EmoScanは、感情障害(F1-score=0.7467)のスクリーニングにおいて、ベースモデルやGPT-4のような他のLLMの性能を上回った(F1-score=0.7467)。
また、優れた説明(BERTScore=0.9408)を提供し、堅牢な一般化性を示す(F1スコアは外部データセットで0.67)。
さらに、EmoScanは、自動評価と人的評価によって検証されるように、面接スキルのベースラインよりも優れています。
この研究は、効果的なメンタルヘルスLLMツールを開発する上で、スケーラブルなデータ生成パイプラインの重要性を強調します。
関連論文リスト
- Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
精神病は、社会的、個人的コストがかなり高い広範囲で不安定な状態である。
近年の人工知能(AI)の進歩は、うつ病、不安障害、双極性障害、統合失調症、外傷後ストレス障害などの病態を認識し、対処するための大きな可能性を秘めている。
データセットやトレーニング済みモデルからの機密データ漏洩のリスクを含むプライバシー上の懸念は、これらのAIシステムを実際の臨床環境にデプロイする上で、依然として重要な障壁である。
論文 参考訳(メタデータ) (2025-02-01T15:10:02Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - Detecting anxiety and depression in dialogues: a multi-label and explainable approach [5.635300481123079]
不安と抑うつは世界中で最も一般的なメンタルヘルスの問題であり、人口の非無視的な部分に影響を及ぼす。
本研究では、不安と抑うつの多ラベル分類のための全く新しいシステムを提案する。
論文 参考訳(メタデータ) (2024-12-23T15:29:46Z) - A BERT-Based Summarization approach for depression detection [1.7363112470483526]
うつ病は世界中で流行する精神疾患であり、対処されないと深刻な反感を引き起こす可能性がある。
機械学習と人工知能は、さまざまなデータソースからのうつ病指標を自律的に検出することができる。
本研究では,入力テキストの長さと複雑さを低減させる前処理手法として,テキスト要約を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:14:34Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - DAIC-WOZ: On the Validity of Using the Therapist's prompts in Automatic Depression Detection from Clinical Interviews [39.08557916089242]
近年の研究では、インタビュアーのプロンプトをモデルに組み込んだ場合の性能向上が報告されている。
インタビュアーのプロンプトを用いたモデルでは,過去のメンタルヘルス問題に関する質問が質問されるインタビューの特定の領域に焦点を絞ることが分かる。
故意に利用することで0.90F1のスコアを得ることができ、このデータセットで報告された最も高い結果は、テキスト情報のみを用いてである。
論文 参考訳(メタデータ) (2024-04-22T09:07:50Z) - Depression Detection on Social Media with Large Language Models [23.075317886505193]
抑うつ検出は、ソーシャルメディア上の投稿履歴を分析して、個人が抑うつに苦しむかどうかを判断することを目的としている。
本稿では,医学的知識と大規模言語モデルの最近の進歩を融合した,DORISと呼ばれる新規なうつ病検出システムを提案する。
論文 参考訳(メタデータ) (2024-03-16T01:01:16Z) - GPT as Psychologist? Preliminary Evaluations for GPT-4V on Visual Affective Computing [74.68232970965595]
MLLM(Multimodal large language model)は、テキスト、音声、画像、ビデオなどの複数のソースからの情報を処理し、統合するように設計されている。
本稿では、視覚的情緒的タスクと推論タスクにまたがる5つの重要な能力を持つMLLMの適用性を評価する。
論文 参考訳(メタデータ) (2024-03-09T13:56:25Z) - Detecting the Clinical Features of Difficult-to-Treat Depression using
Synthetic Data from Large Language Models [0.20971479389679337]
我々は,日常的に収集された物語(自由テキスト)電子健康記録データを問うことができるLarge Language Model(LLM)ベースのツールの開発を目指している。
LLM生成合成データ(GPT3.5)と非最大抑圧(NMS)アルゴリズムを用いてBERTに基づくスパン抽出モデルを訓練する。
以上の結果から,20因子のセットによる臨床データによる総合成績 (0.70 F1) と重要なDTDのサブセットにおける高いパフォーマンス (0.85 F1 と 0.95 の精度) が得られた。
論文 参考訳(メタデータ) (2024-02-12T13:34:33Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
大規模言語モデル(LLM)は、質問応答(QA)タスクを含む生成的および知識集約的なタスクを約束している。
本稿では,広範に採用されているLCMとデータセットを用いた医療再生QAシステムにおける幻覚現象を解析する。
論文 参考訳(メタデータ) (2023-10-10T03:05:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。