MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval
- URL: http://arxiv.org/abs/2508.00579v1
- Date: Fri, 01 Aug 2025 12:22:53 GMT
- Title: MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval
- Authors: Ziyu Gong, Yihua Huang, Chengcheng Mai,
- Abstract summary: The aim is to locate and integrate multi-modal evidences distributed across multiple pages, for question understanding and answer generation.<n>A novel multi-modal RAG model, named MMRAG-DocQA, was proposed, leveraging both textual and visual information across long-range pages.<n>By means of joint similarity evaluation and large language model (LLM)-based re-ranking, a multi-granularity semantic retrieval method was proposed.
- Score: 4.400088031376775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multi-modal long-context document question-answering task aims to locate and integrate multi-modal evidences (such as texts, tables, charts, images, and layouts) distributed across multiple pages, for question understanding and answer generation. The existing methods can be categorized into Large Vision-Language Model (LVLM)-based and Retrieval-Augmented Generation (RAG)-based methods. However, the former were susceptible to hallucinations, while the latter struggled for inter-modal disconnection and cross-page fragmentation. To address these challenges, a novel multi-modal RAG model, named MMRAG-DocQA, was proposed, leveraging both textual and visual information across long-range pages to facilitate accurate question answering. A hierarchical indexing method with the integration of flattened in-page chunks and topological cross-page chunks was designed to jointly establish in-page multi-modal associations and long-distance cross-page dependencies. By means of joint similarity evaluation and large language model (LLM)-based re-ranking, a multi-granularity semantic retrieval method, including the page-level parent page retrieval and document-level summary retrieval, was proposed to foster multi-modal evidence connection and long-distance evidence integration and reasoning. Experimental results performed on public datasets, MMLongBench-Doc and LongDocURL, demonstrated the superiority of our MMRAG-DocQA method in understanding and answering modality-rich and multi-page documents.
Related papers
- Benchmarking Multimodal Understanding and Complex Reasoning for ESG Tasks [56.350173737493215]
Environmental, Social, and Governance (ESG) reports are essential for evaluating sustainability practices, ensuring regulatory compliance, and promoting financial transparency.<n>MMESGBench is a first-of-its-kind benchmark dataset to evaluate multimodal understanding and complex reasoning across structurally diverse and multi-source ESG documents.<n>MMESGBench comprises 933 validated QA pairs derived from 45 ESG documents, spanning across seven distinct document types and three major ESG source categories.
arXiv Detail & Related papers (2025-07-25T03:58:07Z) - Docopilot: Improving Multimodal Models for Document-Level Understanding [87.60020625241178]
We present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents.<n>This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents.<n>Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG.
arXiv Detail & Related papers (2025-07-19T16:03:34Z) - Vision-Guided Chunking Is All You Need: Enhancing RAG with Multimodal Document Understanding [0.0]
Retrieval-Augmented Generation (RAG) systems have revolutionized information retrieval and question answering.<n>Traditional text-based chunking methods struggle with complex document structures, multi-page tables, embedded figures, and contextual dependencies across page boundaries.<n>We present a novel multimodal document chunking approach that leverages Large Multimodal Models (LMMs) to process PDF documents in batches.
arXiv Detail & Related papers (2025-06-19T05:11:43Z) - A Multi-Granularity Retrieval Framework for Visually-Rich Documents [4.804551482123172]
We propose a unified multi-granularity multimodal retrieval framework tailored for two benchmark tasks: MMDocIR and M2KR.<n>Our approach integrates hierarchical encoding strategies, modality-aware retrieval mechanisms, and vision-language model (VLM)-based candidate filtering.<n>Our framework demonstrates robust performance without the need for task-specific fine-tuning.
arXiv Detail & Related papers (2025-05-01T02:40:30Z) - A Unified Retrieval Framework with Document Ranking and EDU Filtering for Multi-document Summarization [18.13855430873805]
Current methods apply truncation after the retrieval process to fit the context length.<n>We propose a novel retrieval-based framework that integrates query selection and document ranking.<n>We evaluate our framework on multiple MDS datasets, demonstrating consistent improvements in ROUGE metrics.
arXiv Detail & Related papers (2025-04-23T13:41:10Z) - M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization? [49.53982792497275]
We investigate whether Large Vision-Language Models (LVLMs) genuinely comprehend interleaved image-text in the document.<n>Existing document understanding benchmarks often assess LVLMs using question-answer formats.<n>We introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench)<n>M-DocSum-Bench comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences.
arXiv Detail & Related papers (2025-03-27T07:28:32Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.30364248231053]
This paper introduces Multi-Modal Retrieval-Augmented Generation (M2RAG)<n>M2RAG is a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models (MLLMs)<n>To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT)
arXiv Detail & Related papers (2025-02-24T16:25:25Z) - MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents [26.39534684408116]
This work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval.<n>The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels.
arXiv Detail & Related papers (2025-01-15T14:30:13Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.<n>We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding [63.33447665725129]
We introduce M3DocRAG, a novel multi-modal RAG framework that flexibly accommodates various document contexts.
M3DocRAG can efficiently handle single or many documents while preserving visual information.
We also present M3DocVQA, a new benchmark for evaluating open-domain DocVQA over 3,000+ PDF documents with 40,000+ pages.
arXiv Detail & Related papers (2024-11-07T18:29:38Z) - PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering [13.625303311724757]
Document Question Answering (QA) presents a challenge in understanding visually-rich documents (VRD)
We propose PDF-MVQA, which is tailored for research journal articles, encompassing multiple pages and multimodal information retrieval.
arXiv Detail & Related papers (2024-04-19T09:00:05Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
Multi-modal multi-hop question answering involves answering a question by reasoning over multiple input sources from different modalities.
Existing methods often retrieve evidences separately and then use a language model to generate an answer based on the retrieved evidences.
We propose a Structured Knowledge and Unified Retrieval-Generation (RG) approach to address these issues.
arXiv Detail & Related papers (2022-12-16T18:12:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.