論文の概要: Graph Counterfactual Explainable AI via Latent Space Traversal
- arxiv url: http://arxiv.org/abs/2501.08850v1
- Date: Wed, 15 Jan 2025 15:04:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:53:44.155087
- Title: Graph Counterfactual Explainable AI via Latent Space Traversal
- Title(参考訳): グラフの非現実的説明可能なAI
- Authors: Andreas Abildtrup Hansen, Paraskevas Pegios, Anna Calissano, Aasa Feragen,
- Abstract要約: 反実的な説明は、分配の代替入力の「アレスト」を見つけることによって予測を説明することを目的としている。
本稿では, 識別可能なブラックボックスグラフ分類器に対して, 反実的説明を生成する手法を提案する。
我々は3つのグラフデータセットに対するアプローチを実証的に検証し、我々のモデルはベースラインよりも一貫してハイパフォーマンスで堅牢であることを示した。
- 参考スコア(独自算出の注目度): 4.337339380445765
- License:
- Abstract: Explaining the predictions of a deep neural network is a nontrivial task, yet high-quality explanations for predictions are often a prerequisite for practitioners to trust these models. Counterfactual explanations aim to explain predictions by finding the ''nearest'' in-distribution alternative input whose prediction changes in a pre-specified way. However, it remains an open question how to define this nearest alternative input, whose solution depends on both the domain (e.g. images, graphs, tabular data, etc.) and the specific application considered. For graphs, this problem is complicated i) by their discrete nature, as opposed to the continuous nature of state-of-the-art graph classifiers; and ii) by the node permutation group acting on the graphs. We propose a method to generate counterfactual explanations for any differentiable black-box graph classifier, utilizing a case-specific permutation equivariant graph variational autoencoder. We generate counterfactual explanations in a continuous fashion by traversing the latent space of the autoencoder across the classification boundary of the classifier, allowing for seamless integration of discrete graph structure and continuous graph attributes. We empirically validate the approach on three graph datasets, showing that our model is consistently high-performing and more robust than the baselines.
- Abstract(参考訳): ディープニューラルネットワークの予測を説明するのは簡単な作業ではありませんが、予測のための高品質な説明は、実践者がこれらのモデルを信頼する上で必要不可欠です。
因果的説明は、あらかじめ特定された方法で予測が変化する分配の代替入力を見つけ、予測を説明することを目的としている。
しかし、ドメイン(例えば、画像、グラフ、表データなど)と考慮された特定のアプリケーションの両方に依存するこの最も近い代替入力をどのように定義するかは、未解決のままである。
グラフの場合、この問題は複雑である
一 個々の性質により、最先端のグラフ分類器の連続的な性質とは対照的に、及び
二 グラフに作用するノード置換群により。
ケース固有変分変分グラフ変分オートエンコーダを用いて, 任意の変分可能なブラックボックスグラフ分類器に対して, 逆実説明を生成する手法を提案する。
分類器の分類境界を越えてオートエンコーダの潜伏空間をトラバースすることで、離散グラフ構造と連続グラフ属性のシームレスな統合を可能にする。
我々は3つのグラフデータセットに対するアプローチを実証的に検証し、我々のモデルはベースラインよりも一貫してハイパフォーマンスで堅牢であることを示した。
関連論文リスト
- Invariant Graph Transformer [0.0]
グラフ機械学習の文脈では、グラフ合理化はモデルの性能を高めることができる。
抽出された有理部分グラフの識別力を確保するために「干渉」と呼ばれる重要な手法が適用される。
本稿では,グラフデータに対する適切な介入戦略を提案する。
論文 参考訳(メタデータ) (2023-12-13T02:56:26Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
グラフ上での対実的説明生成の問題について検討する。
グラフに関する反実的な説明を調査する研究はいくつかあるが、この問題の多くの課題はまだ十分に適応されていない。
本稿では,グラフレベルの予測モデルに対して,グラフ上の反実的説明を生成するための新しいフレームワークCLEARを提案する。
論文 参考訳(メタデータ) (2022-10-16T04:35:32Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
本稿では,グラフ上の分布を構成するノードコピーモデルを提案する。
コピーモデルの有用性を3つのタスクで示す。
提案モデルを用いて,グラフトポロジに対する敵攻撃の効果を緩和する。
論文 参考訳(メタデータ) (2022-08-04T04:04:49Z) - Reinforced Causal Explainer for Graph Neural Networks [112.57265240212001]
グラフニューラルネットワーク(GNN)の探索には説明可能性が不可欠である
我々は強化学習エージェントReinforced Causal Explainer (RC-Explainer)を提案する。
RC-Explainerは忠実で簡潔な説明を生成し、グラフを見えなくするより優れたパワーを持つ。
論文 参考訳(メタデータ) (2022-04-23T09:13:25Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Explaining GNN over Evolving Graphs using Information Flow [12.33508497537769]
グラフニューラルネットワーク(GNN)は、これらの応用の最先端でありながら、人間には不明瞭である。
本稿では,計算グラフ上の経路に対する予測の変化を一意に分解する公理的帰属法を提案する。
予測の進化を説明する経路を最適に選択するために,新しい凸最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-19T04:29:38Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
スタンス予測のための説明グラフ生成の新しい生成および構造化コモンセンスリゾニングタスク(および関連するデータセット)を紹介します。
具体的には、信念と議論が与えられた場合、モデルは、議論が信念を支持しているかどうかを予測し、予測されたスタンスに対する非自明で完全で曖昧な説明として機能する常識強化グラフを生成する必要がある。
グラフの83%は、様々な構造と推論深度を持つ外部のコモンセンスノードを含んでいる。
論文 参考訳(メタデータ) (2021-04-15T17:51:36Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。