Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
- URL: http://arxiv.org/abs/2501.08878v1
- Date: Wed, 15 Jan 2025 15:49:46 GMT
- Title: Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model
- Authors: Runqing Wu, Fei Ye, Qihe Liu, Guoxi Huang, Jinyu Guo, Rongyao Hu,
- Abstract summary: Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge.
This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains.
- Score: 16.035374682124846
- License:
- Abstract: Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge. However, current research predominantly addresses a straightforward learning context, wherein all data samples originate from a singular data domain. This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains. We tackle this intricate learning challenge by introducing a novel methodology, termed the Multi-Source Dynamic Expansion Model (MSDEM), which leverages various pre-trained models as backbones and progressively establishes new experts based on them to adapt to emerging tasks. Additionally, we propose an innovative dynamic expandable attention mechanism designed to selectively harness knowledge from multiple backbones, thereby accelerating the new task learning. Moreover, we introduce a dynamic graph weight router that strategically reuses all previously acquired parameters and representations for new task learning, maximizing the positive knowledge transfer effect, which further improves generalization performance. We conduct a comprehensive series of experiments, and the empirical findings indicate that our proposed approach achieves state-of-the-art performance.
Related papers
- Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning [13.076087281398813]
The proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
Experimental results show that the proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
arXiv Detail & Related papers (2025-01-13T05:16:14Z) - Exploring the Precise Dynamics of Single-Layer GAN Models: Leveraging Multi-Feature Discriminators for High-Dimensional Subspace Learning [0.0]
We study the training dynamics of a single-layer GAN model from the perspective of subspace learning.
By bridging our analysis to the realm of subspace learning, we systematically compare the efficacy of GAN-based methods against conventional approaches.
arXiv Detail & Related papers (2024-11-01T10:21:12Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
In this paper, we employ a Reinforcement Learning framework to simulate the cognitive processes of humans.
We also deploy a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information.
We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets.
arXiv Detail & Related papers (2023-08-26T07:55:32Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Predictive Experience Replay for Continual Visual Control and
Forecasting [62.06183102362871]
We present a new continual learning approach for visual dynamics modeling and explore its efficacy in visual control and forecasting.
We first propose the mixture world model that learns task-specific dynamics priors with a mixture of Gaussians, and then introduce a new training strategy to overcome catastrophic forgetting.
Our model remarkably outperforms the naive combinations of existing continual learning and visual RL algorithms on DeepMind Control and Meta-World benchmarks with continual visual control tasks.
arXiv Detail & Related papers (2023-03-12T05:08:03Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Ex-Model: Continual Learning from a Stream of Trained Models [12.27992745065497]
We argue that continual learning systems should exploit the availability of compressed information in the form of trained models.
We introduce and formalize a new paradigm named "Ex-Model Continual Learning" (ExML), where an agent learns from a sequence of previously trained models instead of raw data.
arXiv Detail & Related papers (2021-12-13T09:46:16Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.