論文の概要: Learning to Extract Cross-Domain Aspects and Understanding Sentiments Using Large Language Models
- arxiv url: http://arxiv.org/abs/2501.08974v1
- Date: Wed, 15 Jan 2025 17:36:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-16 15:52:41.524172
- Title: Learning to Extract Cross-Domain Aspects and Understanding Sentiments Using Large Language Models
- Title(参考訳): 言語モデルを用いた横断的側面の抽出と感覚理解の学習
- Authors: Karukriti Kaushik Ghosh, Chiranjib Sur,
- Abstract要約: アスペクトベースの感情分析(ASBA)は、感情分析の洗練されたアプローチである。
製品、サービス、エンティティの特定の側面や特徴に基づいて感情を抽出し、分類することを目的としています。
- 参考スコア(独自算出の注目度): 4.604003661048267
- License:
- Abstract: Aspect-based sentiment analysis (ASBA) is a refined approach to sentiment analysis that aims to extract and classify sentiments based on specific aspects or features of a product, service, or entity. Unlike traditional sentiment analysis, which assigns a general sentiment score to entire reviews or texts, ABSA focuses on breaking down the text into individual components or aspects (e.g., quality, price, service) and evaluating the sentiment towards each. This allows for a more granular level of understanding of customer opinions, enabling businesses to pinpoint specific areas of strength and improvement. The process involves several key steps, including aspect extraction, sentiment classification, and aspect-level sentiment aggregation for a review paragraph or any other form that the users have provided. ABSA has significant applications in areas such as product reviews, social media monitoring, customer feedback analysis, and market research. By leveraging techniques from natural language processing (NLP) and machine learning, ABSA facilitates the extraction of valuable insights, enabling companies to make data-driven decisions that enhance customer satisfaction and optimize offerings. As ABSA evolves, it holds the potential to greatly improve personalized customer experiences by providing a deeper understanding of sentiment across various product aspects. In this work, we have analyzed the strength of LLMs for a complete cross-domain aspect-based sentiment analysis with the aim of defining the framework for certain products and using it for other similar situations. We argue that it is possible to that at an effectiveness of 92\% accuracy for the Aspect Based Sentiment Analysis dataset of SemEval-2015 Task 12.
- Abstract(参考訳): アスペクトベースの感情分析(ASBA)は、製品、サービス、エンティティの特定の側面や特徴に基づいて感情を抽出し分類することを目的とした、感情分析の洗練されたアプローチである。
レビューやテキスト全体に対して一般的な感情スコアを割り当てる従来の感情分析とは異なり、ABSAはテキストを個々のコンポーネントやアスペクト(品質、価格、サービスなど)に分割し、それぞれに対する感情を評価することに重点を置いている。
これにより、顧客の意見をより細かく理解し、ビジネスが特定の強度と改善の領域を特定できるようになります。
このプロセスには、アスペクト抽出、感情分類、レビュー段落やその他のユーザーが提供したフォームに対するアスペクトレベルの感情集約など、いくつかの重要なステップが含まれている。
ABSAは、製品レビュー、ソーシャルメディアのモニタリング、顧客のフィードバック分析、市場調査など、重要な分野に応用されている。
自然言語処理(NLP)と機械学習のテクニックを活用することで、ABSAは価値ある洞察の抽出を促進する。
ABSAが進化するにつれて、さまざまな製品側面の感情をより深く理解することで、パーソナライズされた顧客エクスペリエンスを大幅に改善する可能性がある。
本研究は, ある商品のフレームワークを定義し, 同様の状況で使用することを目的とした, クロスドメインなアスペクトベースの感情分析のためのLCMの強度を分析した。
本研究は,SemEval-2015 Task 12のアスペクトベース感性分析データセットに対して,92 %の精度で適用可能であることを論じる。
関連論文リスト
- Aspect-Based Sentiment Analysis Techniques: A Comparative Study [2.0813232115705618]
Aspect-based Sentiment Analysis (ABSA) は人工知能(AI)の進歩に支えられている
本研究では、2つのベンチマークデータセット(Restaurant14とLaptop-14)でABSAのディープNN手法を比較した。
FAST LSA は 87.6% と 82.6% の精度で最高の結果を得るが、それぞれ 90.33% と 86.21% の精度で LSA+DeBERTa を通過しない。
論文 参考訳(メタデータ) (2024-07-03T06:21:07Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
感性分析(SA)はテキストマイニングにおける新たな分野である。
これは、異なるソーシャルメディアプラットフォーム上でテキストで表現された意見を計算的に識別し、分類するプロセスである。
論文 参考訳(メタデータ) (2023-11-19T06:29:41Z) - OATS: Opinion Aspect Target Sentiment Quadruple Extraction Dataset for
Aspect-Based Sentiment Analysis [55.61047894397937]
アスペクトベースの感情分析(ABSA)は、ユーザ生成レビュー内の異なる要素に特有の感情を理解する。
OATSデータセットは3つの新しいドメインを包含し,27,470の文レベルと17,092のレビューレベルから構成される。
私たちのイニシアチブは、レストランやラップトップのようなよく知られたドメイン、複雑な四重項抽出タスクのための限られたデータ、時には文とレビューレベルの感情の相乗効果の監視といった、特定の観察されたギャップを埋めることを目指しています。
論文 参考訳(メタデータ) (2023-09-23T07:39:16Z) - UniSA: Unified Generative Framework for Sentiment Analysis [48.78262926516856]
感情分析は、人々の感情状態を理解し、マルチモーダル情報に基づいて感情カテゴリーを予測することを目的としている。
会話における感情認識(ERC)、アスペクトベース感情分析(ABSA)、マルチモーダル感情分析(MSA)など、いくつかのサブタスクから構成される。
論文 参考訳(メタデータ) (2023-09-04T03:49:30Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z) - From Stars to Insights: Exploration and Implementation of Unified Sentiment Analysis with Distant Supervision [1.940999549833078]
本稿では,ACD,ACSA,RPをコヒーレントなフレームワークに統合する新しい学習パラダイムであるUni-SAを紹介する。
本稿では, 単語, アスペクト, 文書レベルでの感情を捉えるためにピラミッド構造を用いたDSPN(Distantly Supervised Pyramid Network)を提案する。
本研究はDSPNの有効性と効率を検証し,感情分析のための堅牢で資源効率の高い統一的な枠組みを構築した。
論文 参考訳(メタデータ) (2023-05-02T18:23:50Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
本稿では、チャットベースのカスタマーサポートのインタラクションにのみ依存して、個々のユーザの推薦決定を予測するフレームワークを提案する。
ケーススタディでは、ラテンアメリカの大手電子商取引会社の金融分野における16.4kのユーザ数と48.7kの顧客サポートに関する会話を分析した。
以上の結果から,CS会話のメッセージワイドな感情進化のみに基づいて,ユーザが製品やサービスを推薦する可能性を予測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2022-11-08T00:43:36Z) - A Simple Information-Based Approach to Unsupervised Domain-Adaptive
Aspect-Based Sentiment Analysis [58.124424775536326]
本稿では,相互情報に基づくシンプルだが効果的な手法を提案し,それらの用語を抽出する。
実験の結果,提案手法はクロスドメインABSAの最先端手法よりも4.32%高い性能を示した。
論文 参考訳(メタデータ) (2022-01-29T10:18:07Z) - SentiLSTM: A Deep Learning Approach for Sentiment Analysis of Restaurant
Reviews [13.018530502810128]
本稿では,レストランのクライアントが提供したレビューを肯定的,否定的な極性に分類する深層学習技術(BiLSTM)を提案する。
テストデータセットの評価の結果、BiLSTM技術は91.35%の精度で生成された。
論文 参考訳(メタデータ) (2020-11-19T06:24:42Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - A Comprehensive Survey on Aspect Based Sentiment Analysis [0.0]
ABSAは、一般的な感情分析よりも、文脈に関するより多くの情報を提供することが知られている。
本調査では, 様々な解を詳細に論じ, 比較を行った。
論文 参考訳(メタデータ) (2020-06-08T14:07:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。