Learning to Extract Cross-Domain Aspects and Understanding Sentiments Using Large Language Models
- URL: http://arxiv.org/abs/2501.08974v1
- Date: Wed, 15 Jan 2025 17:36:56 GMT
- Title: Learning to Extract Cross-Domain Aspects and Understanding Sentiments Using Large Language Models
- Authors: Karukriti Kaushik Ghosh, Chiranjib Sur,
- Abstract summary: Aspect-based sentiment analysis (ASBA) is a refined approach to sentiment analysis.
It aims to extract and classify sentiments based on specific aspects or features of a product, service, or entity.
- Score: 4.604003661048267
- License:
- Abstract: Aspect-based sentiment analysis (ASBA) is a refined approach to sentiment analysis that aims to extract and classify sentiments based on specific aspects or features of a product, service, or entity. Unlike traditional sentiment analysis, which assigns a general sentiment score to entire reviews or texts, ABSA focuses on breaking down the text into individual components or aspects (e.g., quality, price, service) and evaluating the sentiment towards each. This allows for a more granular level of understanding of customer opinions, enabling businesses to pinpoint specific areas of strength and improvement. The process involves several key steps, including aspect extraction, sentiment classification, and aspect-level sentiment aggregation for a review paragraph or any other form that the users have provided. ABSA has significant applications in areas such as product reviews, social media monitoring, customer feedback analysis, and market research. By leveraging techniques from natural language processing (NLP) and machine learning, ABSA facilitates the extraction of valuable insights, enabling companies to make data-driven decisions that enhance customer satisfaction and optimize offerings. As ABSA evolves, it holds the potential to greatly improve personalized customer experiences by providing a deeper understanding of sentiment across various product aspects. In this work, we have analyzed the strength of LLMs for a complete cross-domain aspect-based sentiment analysis with the aim of defining the framework for certain products and using it for other similar situations. We argue that it is possible to that at an effectiveness of 92\% accuracy for the Aspect Based Sentiment Analysis dataset of SemEval-2015 Task 12.
Related papers
- Aspect-Based Sentiment Analysis Techniques: A Comparative Study [2.0813232115705618]
Aspect-based Sentiment Analysis (ABSA) is supported by advances in Artificial Intelligence (AI)
In this study, we compare several deep-NN methods for ABSA on two benchmark datasets (Restaurant14 and Laptop-14)
FAST LSA obtains the best overall results of 87.6% and 82.6% accuracy but does not pass LSA+DeBERTa which reports 90.33% and 86.21% accuracy respectively.
arXiv Detail & Related papers (2024-07-03T06:21:07Z) - A Comprehensive Review on Sentiment Analysis: Tasks, Approaches and
Applications [0.2717221198324361]
Sentiment analysis (SA) is an emerging field in text mining.
It is the process of computationally identifying and categorizing opinions expressed in a piece of text over different social media platforms.
arXiv Detail & Related papers (2023-11-19T06:29:41Z) - OATS: Opinion Aspect Target Sentiment Quadruple Extraction Dataset for
Aspect-Based Sentiment Analysis [55.61047894397937]
Aspect-based sentiment analysis (ABSA) delves into understanding sentiments specific to distinct elements within a user-generated review.
We introduce the OATS dataset, which encompasses three fresh domains and consists of 27,470 sentence-level quadruples and 17,092 review-levels.
Our initiative seeks to bridge specific observed gaps: the recurrent focus on familiar domains like restaurants and laptops, limited data for intricate quadruple extraction tasks, and an occasional oversight of the synergy between sentence and review-level sentiments.
arXiv Detail & Related papers (2023-09-23T07:39:16Z) - UniSA: Unified Generative Framework for Sentiment Analysis [48.78262926516856]
Sentiment analysis aims to understand people's emotional states and predict emotional categories based on multimodal information.
It consists of several subtasks, such as emotion recognition in conversation (ERC), aspect-based sentiment analysis (ABSA), and multimodal sentiment analysis (MSA)
arXiv Detail & Related papers (2023-09-04T03:49:30Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - From Stars to Insights: Exploration and Implementation of Unified Sentiment Analysis with Distant Supervision [1.940999549833078]
This paper introduces Unified Sentiment Analysis (Uni-SA), a novel learning paradigm that unifies ACD, ACSA, and RP into a coherent framework.
We propose the Distantly Supervised Pyramid Network (DSPN), which employs a pyramid structure to capture sentiment at word, aspect, and document levels.
Our findings validate DSPN's effectiveness and efficiency, establishing a robust, resource-efficient, unified framework for sentiment analysis.
arXiv Detail & Related papers (2023-05-02T18:23:50Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - A Simple Information-Based Approach to Unsupervised Domain-Adaptive
Aspect-Based Sentiment Analysis [58.124424775536326]
We propose a simple but effective technique based on mutual information to extract their term.
Experiment results show that our proposed method outperforms the state-of-the-art methods for cross-domain ABSA by 4.32% Micro-F1.
arXiv Detail & Related papers (2022-01-29T10:18:07Z) - SentiLSTM: A Deep Learning Approach for Sentiment Analysis of Restaurant
Reviews [13.018530502810128]
This paper proposes, a deep learning-based technique (i.e., BiLSTM) to classify the reviews provided by the clients of the restaurant into positive and negative polarities.
The results of the evaluation on test dataset show that BiLSTM technique produced in the highest accuracy of 91.35%.
arXiv Detail & Related papers (2020-11-19T06:24:42Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z) - A Comprehensive Survey on Aspect Based Sentiment Analysis [0.0]
ABSA is known to provide more information about the context than general sentiment analysis.
This survey paper discusses various solutions in-depth and gives a comparison between them.
arXiv Detail & Related papers (2020-06-08T14:07:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.