CrystalGRW: Generative Modeling of Crystal Structures with Targeted Properties via Geodesic Random Walks
- URL: http://arxiv.org/abs/2501.08998v1
- Date: Wed, 15 Jan 2025 18:26:35 GMT
- Title: CrystalGRW: Generative Modeling of Crystal Structures with Targeted Properties via Geodesic Random Walks
- Authors: Krit Tangsongcharoen, Teerachote Pakornchote, Chayanon Atthapak, Natthaphon Choomphon-anomakhun, Annop Ektarawong, Björn Alling, Christopher Sutton, Thiti Bovornratanaraks, Thiparat Chotibut,
- Abstract summary: We introduce CrystalGRW, a diffusion-based generative model that can predict stable phases validated by density functional theory.
CrystalGRW demonstrates the ability to generate realistic crystal structures that are close to their ground states with accuracy comparable to existing models.
These features help accelerate materials discovery and inverse design by offering stable, symmetry-consistent crystal candidates for experimental validation.
- Score: 1.2141052067494946
- License:
- Abstract: Determining whether a candidate crystalline material is thermodynamically stable depends on identifying its true ground-state structure, a central challenge in computational materials science. We introduce CrystalGRW, a diffusion-based generative model on Riemannian manifolds that proposes novel crystal configurations and can predict stable phases validated by density functional theory. The crystal properties, such as fractional coordinates, atomic types, and lattice matrices, are represented on suitable Riemannian manifolds, ensuring that new predictions generated through the diffusion process preserve the periodicity of crystal structures. We incorporate an equivariant graph neural network to also account for rotational and translational symmetries during the generation process. CrystalGRW demonstrates the ability to generate realistic crystal structures that are close to their ground states with accuracy comparable to existing models, while also enabling conditional control, such as specifying a desired crystallographic point group. These features help accelerate materials discovery and inverse design by offering stable, symmetry-consistent crystal candidates for experimental validation.
Related papers
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
New solid-state materials require rapidly exploring the vast space of crystal structures and locating stable regions.
Existing methods struggle to explore large material spaces and generate diverse samples with desired properties and requirements.
We propose a novel generative model employing a hierarchical exploration strategy to efficiently exploit the symmetry of the materials space to generate crystal structures given desired properties.
arXiv Detail & Related papers (2024-11-06T23:53:34Z) - CrysToGraph: A Comprehensive Predictive Model for Crystal Materials Properties and the Benchmark [16.456990796982186]
We propose CrysToGraph ($textbfCrys$tals with $textbfT$ransformers $textbfo$n $textbfGraph$s), a novel transformer-based graph geometric network designed specifically for unconventional crystalline systems.
CrysToGraph effectively captures short-range interactions with transformer-based graph convolution blocks as well as long-range interactions with graph-wise transformer blocks.
It outperforms most existing methods, achieving new state-of-the-art results on the benchmarks of both unconventional crystals and traditional crystals
arXiv Detail & Related papers (2024-07-23T02:31:06Z) - Space Group Informed Transformer for Crystalline Materials Generation [2.405914457225118]
We introduce CrystalFormer, a transformer-based autoregressive model specifically designed for space group-controlled generation of crystalline materials.
The incorporation of space group symmetry significantly simplifies the crystal space, which is crucial for data and compute efficient generative modeling of crystalline materials.
arXiv Detail & Related papers (2024-03-23T06:01:45Z) - Complete and Efficient Graph Transformers for Crystal Material Property Prediction [53.32754046881189]
Crystal structures are characterized by atomic bases within a primitive unit cell that repeats along a regular lattice throughout 3D space.
We introduce a novel approach that utilizes the periodic patterns of unit cells to establish the lattice-based representation for each atom.
We propose ComFormer, a SE(3) transformer designed specifically for crystalline materials.
arXiv Detail & Related papers (2024-03-18T15:06:37Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition.
The novelty of the presented approach resides in the fact that the lattice of the crystal cell is not fixed.
A multigraph crystal representation is introduced that respects symmetry constraints, yielding computational advantages.
arXiv Detail & Related papers (2023-10-16T02:53:24Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
We introduce Crystal-GFN, a generative model of crystal structures that sequentially samples structural properties of crystalline materials.
In this paper, we use as objective the formation energy per atom of a crystal structure predicted by a new proxy machine learning model trained on MatBench.
The results demonstrate that Crystal-GFN is able to sample highly diverse crystals with low (median -3.1 eV/atom) predicted formation energy.
arXiv Detail & Related papers (2023-10-07T21:36:55Z) - Crystal Structure Prediction by Joint Equivariant Diffusion [27.52168842448489]
Crystal Structure Prediction (CSP) is crucial in various scientific disciplines.
This paper proposes DiffCSP, a novel diffusion model to learn the structure distribution from stable crystals.
arXiv Detail & Related papers (2023-07-30T15:46:33Z) - Equivariant Message Passing Neural Network for Crystal Material
Discovery [8.481798330936975]
We propose a periodic equivariant message-passing neural network that learns crystal lattice deformation in an unsupervised fashion.
Our model equivalently acts on lattice according to the deformation action that must be performed, making it suitable for crystal generation, relaxation and optimisation.
arXiv Detail & Related papers (2023-02-01T14:48:18Z) - Normalizing flows for atomic solids [67.70049117614325]
We present a machine-learning approach, based on normalizing flows, for modelling atomic solids.
We report Helmholtz free energy estimates for cubic and hexagonal ice modelled as monatomic water as well as for a truncated and shifted Lennard-Jones system.
Our results thus demonstrate that normalizing flows can provide high-quality samples and free energy estimates of solids, without the need for multi-staging or for imposing restrictions on the crystal geometry.
arXiv Detail & Related papers (2021-11-16T18:54:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.