論文の概要: Enhancing Data Integrity through Provenance Tracking in Semantic Web Frameworks
- arxiv url: http://arxiv.org/abs/2501.09029v1
- Date: Sun, 12 Jan 2025 16:13:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:55.246939
- Title: Enhancing Data Integrity through Provenance Tracking in Semantic Web Frameworks
- Title(参考訳): セマンティックWebフレームワークにおけるプロヴァンストラッキングによるデータの整合性向上
- Authors: Nilesh Jain,
- Abstract要約: SURROUND Australia Pty Ltdは、PROVデータモデル(PROV-DM)とそのセマンティックWeb変種であるPROV-Oの革新的な適用例を実証している。
論文では、包括的な実績データ、堅牢なバリデーション、トレーサビリティ、知識推論をキャプチャする同社のアーキテクチャを強調している。
- 参考スコア(独自算出の注目度): 1.3597551064547502
- License:
- Abstract: This paper explores the integration of provenance tracking systems within the context of Semantic Web technologies to enhance data integrity in diverse operational environments. SURROUND Australia Pty Ltd demonstrates innovative applica-tions of the PROV Data Model (PROV-DM) and its Semantic Web variant, PROV-O, to systematically record and manage provenance information across multiple data processing domains. By employing RDF and Knowledge Graphs, SURROUND ad-dresses the critical challenges of shared entity identification and provenance granularity. The paper highlights the company's architecture for capturing comprehensive provenance data, en-abling robust validation, traceability, and knowledge inference. Through the examination of two projects, we illustrate how provenance mechanisms not only improve data reliability but also facilitate seamless integration across heterogeneous systems. Our findings underscore the importance of sophisticated provenance solutions in maintaining data integrity, serving as a reference for industry peers and academics engaged in provenance research and implementation.
- Abstract(参考訳): 本稿では,セマンティックWeb技術のコンテキスト内において,各種運用環境におけるデータの整合性を高めるためのプロビタンストラッキングシステムの統合について検討する。
SURROUND Australia Pty Ltdは、PROVデータモデル(PROV-DM)とそのセマンティックWeb変種であるPROV-Oの革新的な適用例を示し、複数のデータ処理領域にまたがる前兆情報を体系的に記録し管理する。
RDFとKnowledge Graphsを採用することで、SURROUNDは、共有エンティティの識別と証明の粒度に関する重要な課題に対処する。
論文では、包括的な実績データ、堅牢なバリデーション、トレーサビリティ、知識推論をキャプチャする同社のアーキテクチャを強調している。
2つのプロジェクトの検証を通じて,データ信頼性の向上だけでなく,異種システム間のシームレスな統合も実現していることを示す。
本研究は,データ整合性維持における高度な証明ソリューションの重要性を浮き彫りにするものである。
関連論文リスト
- Deploying Large Language Models With Retrieval Augmented Generation [0.21485350418225244]
Retrieval Augmented Generationは、大規模言語モデルのトレーニングセット外のデータソースからの知識を統合するための重要なアプローチとして登場した。
本稿では,LLMとRAGを統合して情報検索を行うパイロットプロジェクトの開発とフィールドテストから得られた知見について述べる。
論文 参考訳(メタデータ) (2024-11-07T22:11:51Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
本稿では,Web検索と知識グラフを統合したWeKnow-RAGを提案する。
まず,知識グラフの構造化表現と高次ベクトル検索の柔軟性を組み合わせることで,LLM応答の精度と信頼性を向上させる。
提案手法は,情報検索の効率と精度を効果的にバランスさせ,全体の検索プロセスを改善する。
論文 参考訳(メタデータ) (2024-08-14T15:19:16Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - Self-consistent Deep Geometric Learning for Heterogeneous Multi-source Spatial Point Data Prediction [10.646376827353551]
環境モニタリングや天然資源管理といった分野において,マルチソース空間データ予測が重要である。
この領域の既存のモデルはドメイン固有の性質のためにしばしば不足し、様々な情報源からの情報を統合する戦略が欠如している。
我々は,地中真理ラベルを頼らずに,様々な情報源からの情報を順に整列する,革新的なマルチソース空間点データ予測フレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-30T16:13:13Z) - Curating Grounded Synthetic Data with Global Perspectives for Equitable AI [0.5120567378386615]
我々は,実世界の多様性を基盤として,戦略的多様化を通じて充実した合成データセットを作成するための新しいアプローチを導入する。
我々は12の言語と125の国にまたがる包括的なニュース記事の集合を用いてデータを合成し、言語的・文化的表現の広さを確実にする。
予備的な結果は、従来のNERベンチマークのパフォーマンスが最大7.3%向上したことを示している。
論文 参考訳(メタデータ) (2024-06-10T17:59:11Z) - Collect, Measure, Repeat: Reliability Factors for Responsible AI Data
Collection [8.12993269922936]
AIのデータ収集は責任ある方法で行うべきだと我々は主張する。
本稿では,データ収集をメトリクスの集合でガイドするResponsible AI(RAI)手法を提案する。
論文 参考訳(メタデータ) (2023-08-22T18:01:27Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
本研究では、シミュレーションデータセットに存在する困難とドメインギャップに対処する合成データ生成パイプラインを提案する。
既存のデータセットからアノテーションや視覚的手がかりを利用すれば、自動マルチモーダルデータ生成が容易になることを示す。
論文 参考訳(メタデータ) (2022-08-16T20:46:08Z) - Unsupervised Domain Adaptive Learning via Synthetic Data for Person
Re-identification [101.1886788396803]
人物再識別(re-ID)は、ビデオ監視に広く応用されているため、ますます注目を集めている。
残念なことに、主流のディープラーニング手法では、モデルをトレーニングするために大量のラベル付きデータが必要です。
本稿では,コンピュータゲーム内で合成されたre-IDサンプルを自動的に生成するデータコレクタを開発し,同時にアノテートするデータラベラを構築した。
論文 参考訳(メタデータ) (2021-09-12T15:51:41Z) - Mapping Patterns for Virtual Knowledge Graphs [71.61234136161742]
仮想知識グラフ(VKG)は、レガシーデータソースの統合とアクセスのための最も有望なパラダイムの1つである。
データ管理、データ分析、概念モデリングにおいて研究された、確立された方法論とパターンに基づいて構築する。
検討されたVKGシナリオに基づいて,私たちのカタログを検証し,そのパターンの大部分をカバーすることを示す。
論文 参考訳(メタデータ) (2020-12-03T13:54:52Z) - Entity-Switched Datasets: An Approach to Auditing the In-Domain
Robustness of Named Entity Recognition Models [49.878051587667244]
そこで本稿では,エンティティの国家的起源によるパフォーマンスの違いに着目し,システムのドメイン内ロバスト性を評価する手法を提案する。
我々は、エンティティに切り替えたデータセットを作成し、元のテキストにある名前のエンティティを、同じタイプの、異なる国家起源の、もっともらしい名前のエンティティに置き換える。
同じ文脈では、ある起源のエンティティは、他の領域のエンティティよりも確実に認識される。
論文 参考訳(メタデータ) (2020-04-08T17:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。