Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
- URL: http://arxiv.org/abs/2501.09112v1
- Date: Wed, 15 Jan 2025 19:46:23 GMT
- Title: Mantis Shrimp: Exploring Photometric Band Utilization in Computer Vision Networks for Photometric Redshift Estimation
- Authors: Andrew Engel, Nell Byler, Adam Tsou, Gautham Narayan, Emmanuel Bonilla, Ian Smith,
- Abstract summary: We present a model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery.
Mantis Shrimp estimates the conditional density estimate of redshift using cutout images.
We study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys.
- Score: 0.30924355683504173
- License:
- Abstract: We present Mantis Shrimp, a multi-survey deep learning model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery. Machine learning is now an established approach for photometric redshift estimation, with generally acknowledged higher performance in areas with a high density of spectroscopically identified galaxies over template-based methods. Multiple works have shown that image-based convolutional neural networks can outperform tabular-based color/magnitude models. In comparison to tabular models, image models have additional design complexities: it is largely unknown how to fuse inputs from different instruments which have different resolutions or noise properties. The Mantis Shrimp model estimates the conditional density estimate of redshift using cutout images. The density estimates are well calibrated and the point estimates perform well in the distribution of available spectroscopically confirmed galaxies with (bias = 1e-2), scatter (NMAD = 2.44e-2) and catastrophic outlier rate ($\eta$=17.53$\%$). We find that early fusion approaches (e.g., resampling and stacking images from different instruments) match the performance of late fusion approaches (e.g., concatenating latent space representations), so that the design choice ultimately is left to the user. Finally, we study how the models learn to use information across bands, finding evidence that our models successfully incorporates information from all surveys. The applicability of our model to the analysis of large populations of galaxies is limited by the speed of downloading cutouts from external servers; however, our model could be useful in smaller studies such as generating priors over redshift for stellar population synthesis.
Related papers
- Preliminary Report on Mantis Shrimp: a Multi-Survey Computer Vision
Photometric Redshift Model [0.431625343223275]
Photometric redshift estimation is a well-established subfield of astronomy.
Mantis Shrimp is a computer vision model for photometric redshift estimation that fuses ultra-violet (GALEX), optical (PanSTARRS), and infrared (UnWISE) imagery.
arXiv Detail & Related papers (2024-02-05T21:44:19Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANdom RAy Consensus (RANRAC) is an efficient approach to eliminate the effect of inconsistent data.
We formulate a fuzzy adaption of the RANSAC paradigm, enabling its application to large scale models.
Results indicate significant improvements compared to state-of-the-art robust methods for novel-view synthesis.
arXiv Detail & Related papers (2023-12-15T13:33:09Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Photo-zSNthesis: Converting Type Ia Supernova Lightcurves to Redshift
Estimates via Deep Learning [0.0]
Photo-zSNthesis is a convolutional neural network-based method for predicting full redshift probability distributions.
We show a 61x improvement in prediction bias Delta z> on PLAsTiCC simulations and 5x improvement on real SDSS data.
arXiv Detail & Related papers (2023-05-19T17:59:00Z) - Core Risk Minimization using Salient ImageNet [53.616101711801484]
We introduce the Salient Imagenet dataset with more than 1 million soft masks localizing core and spurious features for all 1000 Imagenet classes.
Using this dataset, we first evaluate the reliance of several Imagenet pretrained models (42 total) on spurious features.
Next, we introduce a new learning paradigm called Core Risk Minimization (CoRM) whose objective ensures that the model predicts a class using its core features.
arXiv Detail & Related papers (2022-03-28T01:53:34Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Realistic galaxy image simulation via score-based generative models [0.0]
We show that a score-based generative model can be used to produce realistic yet fake images that mimic observations of galaxies.
Subjectively, the generated galaxies are highly realistic when compared with samples from the real dataset.
arXiv Detail & Related papers (2021-11-02T16:27:08Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z) - Bayesian Fusion for Infrared and Visible Images [26.64101343489016]
In this paper, a novel Bayesian fusion model is established for infrared and visible images.
We aim at making the fused image satisfy human visual system.
Compared with the previous methods, the novel model can generate better fused images with high-light targets and rich texture details.
arXiv Detail & Related papers (2020-05-12T14:57:19Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.