Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation
- URL: http://arxiv.org/abs/2501.09116v1
- Date: Wed, 15 Jan 2025 19:52:02 GMT
- Title: Deep Distance Map Regression Network with Shape-aware Loss for Imbalanced Medical Image Segmentation
- Authors: Huiyu Li, Xiabi Liu, Said Boumaraf, Xiaopeng Gong, Donghai Liao, Xiaohong Ma,
- Abstract summary: We propose a new segmentation framework that incorporates the existing binary segmentation network and a light weight regression network (dubbed as LR-Net)
We derive a shape-aware loss by employing distance maps as penalty map to infer the complete shape of an object.
Experimental results show that our approach outperforms other classification-based methods as well as other existing state-of-the-arts.
- Score: 3.8769521116457146
- License:
- Abstract: Small object segmentation, like tumor segmentation, is a difficult and critical task in the field of medical image analysis. Although deep learning based methods have achieved promising performance, they are restricted to the use of binary segmentation mask. Inspired by the rigorous mapping between binary segmentation mask and distance map, we adopt distance map as a novel ground truth and employ a network to fulfill the computation of distance map. Specially, we propose a new segmentation framework that incorporates the existing binary segmentation network and a light weight regression network (dubbed as LR-Net). Thus, the LR-Net can convert the distance map computation into a regression task and leverage the rich information of distance maps. Additionally, we derive a shape-aware loss by employing distance maps as penalty map to infer the complete shape of an object. We evaluated our approach on MICCAI 2017 Liver Tumor Segmentation (LiTS) Challenge dataset and a clinical dataset. Experimental results show that our approach outperforms the classification-based methods as well as other existing state-of-the-arts.
Related papers
- PI-Att: Topology Attention for Segmentation Networks through Adaptive Persistence Image Representation [1.4680035572775534]
We introduce a new topology-aware loss function, which explicitly forces the network to minimize the topological dissimilarity between the ground truth and prediction maps.
We quantify the topology of each map by the persistence image representation, for the first time in the context of a segmentation network loss.
The effectiveness of the proposed PI-Att loss is demonstrated on two different datasets for aorta and great vessel segmentation in computed tomography images.
arXiv Detail & Related papers (2024-08-15T09:06:49Z) - Contour-weighted loss for class-imbalanced image segmentation [2.183832403223894]
Image segmentation is critically important in almost all medical image analysis for automatic interpretations and processing.
It is often challenging to perform image segmentation due to data imbalance between intra- and inter-class.
We propose a new methodology to address the issue, with a compact yet effective contour-weighted loss function.
arXiv Detail & Related papers (2024-06-07T07:43:52Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Residual Moment Loss for Medical Image Segmentation [56.72261489147506]
Location information is proven to benefit the deep learning models on capturing the manifold structure of target objects.
Most existing methods encode the location information in an implicit way, for the network to learn.
We propose a novel loss function, namely residual moment (RM) loss, to explicitly embed the location information of segmentation targets.
arXiv Detail & Related papers (2021-06-27T09:31:49Z) - Dense Regression Activation Maps For Lesion Segmentation in CT scans of
COVID-19 patients [9.313053265087262]
We propose a weakly-supervised segmentation method based on dense regression activation maps (dRAM)
Our method substantially improves the intersection over union from 0.335 in the CAM-based weakly supervised segmentation method to 0.495.
arXiv Detail & Related papers (2021-05-25T08:29:35Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Meta Corrupted Pixels Mining for Medical Image Segmentation [30.140008860735062]
In medical image segmentation, it is very laborious and expensive to acquire precise pixel-level annotations.
We propose a novel Meta Corrupted Pixels Mining (MCPM) method based on a simple meta mask network.
Our method is targeted at automatically estimate a weighting map to evaluate the importance of every pixel in the learning of segmentation network.
arXiv Detail & Related papers (2020-07-07T15:12:20Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.