Deep Self-Supervised Disturbance Mapping with the OPERA Sentinel-1 Radiometric Terrain Corrected SAR Backscatter Product
- URL: http://arxiv.org/abs/2501.09129v1
- Date: Wed, 15 Jan 2025 20:24:18 GMT
- Title: Deep Self-Supervised Disturbance Mapping with the OPERA Sentinel-1 Radiometric Terrain Corrected SAR Backscatter Product
- Authors: Harris Hardiman-Mostow, Charles Marshak, Alexander L. Handwerger,
- Abstract summary: Mapping land surface disturbances supports disaster response, resource and ecosystem management, and climate adaptation efforts.
Synthetic aperture radar (SAR) is an invaluable tool for disturbance mapping, providing consistent time-series images of the ground regardless of weather or illumination conditions.
NASA's Observational Products for End-Users from Remote Sensing Analysis (OPERA) project released the near-global Radiometric Terrain Corrected SAR backscatter from Sentinel-1 (RTC-S1) dataset in October 2023.
In this work, we utilize this new dataset to systematically analyze land surface disturbances.
- Score: 41.94295877935867
- License:
- Abstract: Mapping land surface disturbances supports disaster response, resource and ecosystem management, and climate adaptation efforts. Synthetic aperture radar (SAR) is an invaluable tool for disturbance mapping, providing consistent time-series images of the ground regardless of weather or illumination conditions. Despite SAR's potential for disturbance mapping, processing SAR data to an analysis-ready format requires expertise and significant compute resources, particularly for large-scale global analysis. In October 2023, NASA's Observational Products for End-Users from Remote Sensing Analysis (OPERA) project released the near-global Radiometric Terrain Corrected SAR backscatter from Sentinel-1 (RTC-S1) dataset, providing publicly available, analysis-ready SAR imagery. In this work, we utilize this new dataset to systematically analyze land surface disturbances. As labeling SAR data is often prohibitively time-consuming, we train a self-supervised vision transformer - which requires no labels to train - on OPERA RTC-S1 data to estimate a per-pixel distribution from the set of baseline imagery and assess disturbances when there is significant deviation from the modeled distribution. To test our model's capability and generality, we evaluate three different natural disasters - which represent high-intensity, abrupt disturbances - from three different regions of the world. Across events, our approach yields high quality delineations: F1 scores exceeding 0.6 and Areas Under the Precision-Recall Curve exceeding 0.65, consistently outperforming existing SAR disturbance methods. Our findings suggest that a self-supervised vision transformer is well-suited for global disturbance mapping and can be a valuable tool for operational, near-global disturbance monitoring, particularly when labeled data does not exist.
Related papers
- Real-Time Stochastic Terrain Mapping and Processing for Autonomous Safe Landing [0.0]
This paper develops a novel real-time planetary terrain mapping algorithm.
It accounts for topographic uncertainty between the sampled points, or the uncertainty due to sparse 3D measurements.
arXiv Detail & Related papers (2024-09-14T05:12:14Z) - A Data-Driven Supervised Machine Learning Approach to Estimating Global
Ambient Air Pollution Concentrations With Associated Prediction Intervals [0.0]
We have developed a scalable, data-driven, supervised machine learning framework to impute missing temporal and spatial measurements.
This model is designed to impute missing temporal and spatial measurements, thereby generating a comprehensive dataset for pollutants including NO$, O$_3$, PM$_10$, PM$_2.5$, and SO$.
The model's performance across various geographical locations is examined, providing insights and recommendations for strategic placement of future monitoring stations.
arXiv Detail & Related papers (2024-02-15T11:09:22Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Large Scale Masked Autoencoding for Reducing Label Requirements on SAR Data [5.235143203977019]
We apply a self-supervised pretraining scheme, masked autoencoding, to SAR amplitude data covering 8.7% of the Earth's land surface area.
We show that the use of this pretraining scheme reduces labelling requirements for the downstream tasks by more than an order of magnitude.
Our findings significantly advance climate change mitigation by facilitating the development of task and region-specific SAR models.
arXiv Detail & Related papers (2023-10-02T00:11:47Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - AB2CD: AI for Building Climate Damage Classification and Detection [0.0]
We explore the implementation of deep learning techniques for precise building damage assessment in the context of natural hazards.
We tackle the challenges of generalization to novel disasters and regions while accounting for the influence of low-quality and noisy labels.
Our research findings showcase the potential and limitations of advanced AI solutions in enhancing the impact assessment of climate change-induced extreme weather events.
arXiv Detail & Related papers (2023-09-03T03:37:04Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
Anomaly detection in temporal data from sensors under aviation scenarios is a practical but challenging task.
We propose a Graphical Temporal Data Analysis framework.
It consists three modules, named Series-to-Image (S2I), Cluster-based Resampling Approach using Euclidean Distance (CRD) and Variance-Based Loss (VBL)
arXiv Detail & Related papers (2023-05-17T09:37:07Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Learning from Multimodal and Multitemporal Earth Observation Data for
Building Damage Mapping [17.324397643429638]
We have developed a global multisensor and multitemporal dataset for building damage mapping.
The global dataset contains high-resolution optical imagery and high-to-moderate-resolution multiband SAR data.
We defined a damage mapping framework for the semantic segmentation of damaged buildings based on a deep convolutional neural network algorithm.
arXiv Detail & Related papers (2020-09-14T05:04:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.