Attention is All You Need Until You Need Retention
- URL: http://arxiv.org/abs/2501.09166v1
- Date: Wed, 15 Jan 2025 21:33:53 GMT
- Title: Attention is All You Need Until You Need Retention
- Authors: M. Murat Yaslioglu,
- Abstract summary: This work introduces a novel Retention Layer mechanism for Transformer based architectures, addressing their inherent lack of intrinsic retention capabilities.
The Retention Layer incorporates a persistent memory module capable of real time data population, dynamic recall, and guided output generation.
In each domain, the retention mechanism enables systems to learn incrementally, personalize outputs, and respond to evolving real world challenges effectively.
- Score: 0.0
- License:
- Abstract: This work introduces a novel Retention Layer mechanism for Transformer based architectures, addressing their inherent lack of intrinsic retention capabilities. Unlike human cognition, which can encode and dynamically recall symbolic templates, Generative Pretrained Transformers rely solely on fixed pretrained weights and ephemeral context windows, limiting their adaptability. The proposed Retention Layer incorporates a persistent memory module capable of real time data population, dynamic recall, and guided output generation. This enhancement allows models to store, update, and reuse observed patterns across sessions, enabling incremental learning and bridging the gap between static pretraining and dynamic, context sensitive adaptation. The Retention Layer design parallels social learning processes, encompassing attention, retention, reproduction, and motivation stages. Technically, it integrates a memory attention mechanism and episodic buffers to manage memory scalability, mitigate overfitting, and ensure efficient recall. Applications span adaptive personal assistants, real time fraud detection, autonomous robotics, content moderation, and healthcare diagnostics. In each domain, the retention mechanism enables systems to learn incrementally, personalize outputs, and respond to evolving real world challenges effectively. By emulating key aspects of human learning, this retention enhanced architecture fosters a more fluid and responsive AI paradigm, paving the way for dynamic, session aware models that extend the capabilities of traditional Transformers into domains requiring continual adaptation.
Related papers
- Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration [0.0]
A novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference.
Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise.
arXiv Detail & Related papers (2025-02-15T07:06:10Z) - Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation [0.0]
This study introduces hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures.
Results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences.
The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions.
arXiv Detail & Related papers (2025-01-23T22:20:36Z) - PersonaMagic: Stage-Regulated High-Fidelity Face Customization with Tandem Equilibrium [55.72249032433108]
PersonaMagic is a stage-regulated generative technique designed for high-fidelity face customization.
Our method learns a series of embeddings within a specific timestep interval to capture face concepts.
Tests confirm the superiority of PersonaMagic over state-of-the-art methods in both qualitative and quantitative evaluations.
arXiv Detail & Related papers (2024-12-20T08:41:25Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - Neuromimetic metaplasticity for adaptive continual learning [2.1749194587826026]
We propose a metaplasticity model inspired by human working memory to achieve catastrophic forgetting-free continual learning.
A key aspect of our approach involves implementing distinct types of synapses from stable to flexible, and randomly intermixing them to train synaptic connections with different degrees of flexibility.
The model achieved a balanced tradeoff between memory capacity and performance without requiring additional training or structural modifications.
arXiv Detail & Related papers (2024-07-09T12:21:35Z) - The Empirical Impact of Forgetting and Transfer in Continual Visual Odometry [4.704582238028159]
We investigate the impact of catastrophic forgetting and the effectiveness of knowledge transfer in neural networks trained continuously in an embodied setting.
We observe initial satisfactory performance with high transferability between environments, followed by a specialization phase.
These findings emphasize the open challenges of balancing adaptation and memory retention in lifelong robotics.
arXiv Detail & Related papers (2024-06-03T21:32:50Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Recurrent Action Transformer with Memory [39.58317527488534]
This paper proposes a novel model architecture that incorporates a recurrent memory mechanism designed to regulate information retention.
We conduct experiments on memory-intensive environments (ViZDoom-Two-Colors, T-Maze, Memory Maze, Minigrid-Memory), classic Atari games, and MuJoCo control environments.
The results show that using memory can significantly improve performance in memory-intensive environments, while maintaining or improving results in classic environments.
arXiv Detail & Related papers (2023-06-15T19:29:08Z) - Stabilizing Transformer Training by Preventing Attention Entropy
Collapse [56.45313891694746]
We investigate the training dynamics of Transformers by examining the evolution of the attention layers.
We show that $sigma$Reparam successfully prevents entropy collapse in the attention layers, promoting more stable training.
We conduct experiments with $sigma$Reparam on image classification, image self-supervised learning, machine translation, speech recognition, and language modeling tasks.
arXiv Detail & Related papers (2023-03-11T03:30:47Z) - Pessimism meets VCG: Learning Dynamic Mechanism Design via Offline
Reinforcement Learning [114.36124979578896]
We design a dynamic mechanism using offline reinforcement learning algorithms.
Our algorithm is based on the pessimism principle and only requires a mild assumption on the coverage of the offline data set.
arXiv Detail & Related papers (2022-05-05T05:44:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.